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Abstract

Empowering machines with the ability to read and reason lives at the heart of

Artificial Intelligence (AI) research. Language is ubiquitous, serving as a key com-

munication mechanism that is woven tightly into the fabric of society and humanity.

The pervasiveness of textual content is made evident by the billions of documents,

social posts, and messages on the web. As such, the ability to make sense, reason

and understand textual content has immense potential to benefit a large range of

real-world applications such as search, question answering, recommender systems,

and/or personal chat assistants.

This thesis tackles the problem of natural language understanding (NLU) and in

particular, problem domains that fall under the umbrella of NLU, e.g., question

answering, machine reading comprehension, natural language inference, retrieval-

based NLU, etc. More specifically, we study machine learning models (in particular,

neural architectures), for solving a suite of NLU problems. The key goal is to enable

machines to be able to read and comprehend natural language.

We make several novel contributions in this thesis, mainly revolving around the

design of neural architectures for NLU problems. The key contributions are listed

as follows:

� We propose two new state-of-the-art neural models for natural language in-

ference: ComProp Alignment-Factorized Encoders (CAFE) and Co-Stack

Residual Affinity Networks (CSRAN). On the single model setting, CAFE

and CSRAN achieves 88:5% accuracy and 88:7% accuracy respectively on

the well-studied SNLI benchmark.

� We propose Multi-Cast Attention Networks (MCAN) for retrieval-based NLU.

On Ubuntu dialogue corpus, MCAN outperforms the existing state-of-the-art

models by 9%. MCAN also achieves the best performing score of 0:838 MAP

and 0:904 MRR on the well-studied TrecQA dataset.

ix
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� We propose Densely Connected Attention Propagation (DecaProp), a new

model designed for machine reading comprehension (MRC) on the web. We

achieve state-of-the-art performance on reading tests on news and Wikipedia

articles. DecaProp achieves 2:6%� 14:2% absolute improvement in F1 score

over the existing state-of-the-art on four challenging MRC datasets.

� We propose Introspective Alignment Reader and Curriculum Pointer-Generator

(IAL-CPG) model for reading and understanding long narratives. IAL-CPG

achieves state-of-the-art performance on the NarrativeQA reading compre-

hension challenge. On metrics such as BLEU-4 and Rouge-L, we achieve a

17% relative improvement over prior state-of-the-art and a 10 times improve-

ment in terms of BLEU-4 score over BiDAF, a strong span prediction based

model.

� We propose Multi-Pointer Co-Attention Networks (MPCN) for recommen-

dation with reviews. On Amazon Reviews dataset, MPCN improves the

existing state-of-the-art DeepCoNN and D-ATT model by up to 71% and 5%

respectively in terms of relative improvement.

� Moreover, we propose two novel general-purpose encoding units for sequence

encoding for natural language understanding: Dilated Compositional Units

(DCU) and Recurrently Controlled Recurrent Networks (RCRN). DCU achieves

state-of-the-art on the RACE dataset, demonstrating improvement over LST-

M/GRU encoders by 6%. On the other hand, RCRN outperforms stacked

BiLSTMs and BiLSTMs across 26 NLP/NLU datasets.

� Finally, we propose two novel techniques for efficient training and infer-

ence of NLU models: HyperQA (Hyperbolic NLU) and Quaternion Atten-

tion/Quaternion Transformer Models. HyperQA outperforms strong atten-

tion and recurrent baselines while being extremely lightweight (40K to 90K

parameters). On the other hand, Quaternion Attention/Quaternion Trans-

formers enable up to 75% parameter reduction while maintaining competitive

performance.
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Chapter 1

Introduction

The ability for machines to understand and reason with language lives at the heart

of Arti�cial Intelligence (AI) research. After all, language not only plays a pivotal

role in our daily lives but is also central to many forms of human communication.

Language is ubiquitous, residing in documents, the world wide web, chat messages

and/or social media. To this end, enabling machines to understand and reason

with language has the potential to bene�t a wide spectrum of these applications,

e.g., question answering [1], search [2, 3], personal assistants and/or recommender

systems [4]. This �eld, known asnatural language understanding(NLU), involves

teaching machines to read and comprehend [5]. It is well-established that incor-

porating a suitable inductive (architectural) bias goes a long way in building NLU

systems. As such, this thesis tackles the problem of designing e�ective and e�cient

neural network architectures for building natural language understanding systems.

1.1 Motivation

Language understanding is indeed an extremely challenging problem. Language

is highly complex and nuanced. For example, understanding intricacies in user

queries alone might already be extremely di�cult, let alone understanding entire

documents or chat logs. For many NLU applications, there is also a critical need to

scaling beyond surface-level understanding [5, 6]. Past decades of NLU research has

primarily focused on either feature-based machine learning [7, 8] or structure-based

representations [9, 10]. However, both of which not only do not perform well, but

1



Chapter 1 Introduction 2

are also generally limited in their understanding capabilities. Today, many modern

NLU systems (e.g., QA, personal assistants) are largely based on neural network

approaches [11{15].

The beauty of the neural paradigm is multi-fold. Firstly, it is common to com-

pletely dispense with handcrafted features, relying on distributed representations

pre-trained in an unsupervised manner from large corpora (e.g, word embeddings

[16] or pretrained language models [15, 17]). Secondly, a multitude of neural com-

ponents such as sequence encoders also provide a highly e�ective inductive bias for

modeling the sequential nature of language [18{20]. Thirdly, recent advances such

as attention modules [21{25] facilitate the encoding of reasoning-inspired inductive

biases within networks. Lastly, these neural components are generally modular,

universally applicable and general purpose. In short, they have the potential for

impact beyond the originally intended application. To this end, the research cli-

mate today is often not constrained to a single application but actually considers

the versatility of these neural components. Conversely, in the pre-neural era, many

methods had to be specially tailored to a single application use case.

As such, the design of these core neural building blocks (encoders and/or reasoning

modules) becomes fundamental to NLU research. The design of e�cient, highly

performant end-to-end neural architectures, blocks, components, and inductive bi-

ases for natural language understanding forms the central theme of this thesis.

A large driving force behind NLU research stems from industrial demands [26{28].

A wide spectrum of real-world applications enjoy bene�ts from improvements in

NLU technology. It is easy to enumerate a few key applications, e.g., document

search [29, 30], question answering [25] and/or dialogue systems [11, 31, 32].

As a prime example, the development of advanced NLU systems is central to the

development of advanced search and information retrieval (IR) systems. Tradi-

tionally, many IR systems are based on surface-level features and as a result, face

inherent di�culties with bridging the lexical gap [33]. At this juncture, NLU en-

hanced IR systems are able to better cope with both modeling user queries (or

questions) and documents. This impact spans across a myriad of potential ap-

plications such as web search, question answering systems [5, 34], conversational

systems [11, 35], social media search [36], etc.
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At a deeper level, NLU has closed links to allied problem domains such as com-

monsense reasoning [37], semantics and knowledge representation [38{40]. To this

end, many commonsense reasoning problems have been posed as inference for NLU

problems [41, 42]. It is often di�cult to distinguish between these problem areas

given that they often require overlapping capabilities, i.e., in order to understand

language, one requires some levels of basic commonsense. Any application that

requires reasoning and understanding to text can bene�t from NLU research.

From a philosophical point of view, the domain of NLU is also highly related to

the core principle of intelligence, i.e., NLU is an intuitive prerequisite for Arti�cial

General Intelligence (AGI) to manifest. Moreover, the ability for machines to

provide explanations for predictions is also tightly coupled to NLU capabilities

since a machine needs to su�ciently understand language in order to express itself.

In short, language understanding is as fundamental to machines as it is to humans.

The use of neural architectures for NLU (i.e., deep learning for NLU) is a recent and

emerging research area. Works in the recent years have seen progress in challenging

machines to reading comprehension tests [1, 5], solving standardized tests [43]

or commonsense inference [41, 42]. While still in its infancy, the study of these

building blocks for reasoning with language is fundamental to progress in this �eld.

Despite making reasonably exciting progress in recent years, we (the community)

are still working things out. As such, this is an exciting time and motivating factor

for pursuing NLU research.

1.2 Research Objectives

The main objectives of this thesis are outlined as follows:

� Advance the state-of-the-art across natural language understanding tasks

such as natural language inference, question answering and machine reading

comprehension, retrieval-based NLU and NLU-based recommender systems.

� Propose e�ective and e�cient novel neural models and/or general universal

building blocks for neural NLU systems.
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1.3 Problem Overview and Research Scope

In this thesis, we consider several angles of attack against the challenging problems

of natural language understanding (NLU).

In general, Natural language Inference (NLI) [44, 45], Machine Reading Com-

prehension (MRC) and Question Answering [1, 46, 47] are generally regarded as

core NLU tasks since theyexplicitly probe for understanding and reasoning. As

such, they are commonly adopted as test beds for evaluating the performance and

progress of designing NLU models. In MRC systems, machines are required to read

a paragraph and answer a question. This is akin to how the education system tests

for a student's understanding in comprehension examinations.

In lieu of the modular, universally applicable nature of the research climate today,

this thesis also aims to study fundamental building blocks that are commonly used

across many NLU and NLP systems (e.g, recurrent encoders). To this end, the

design of neural building blocks (sequence encoders and/or attention modules) has

immense potential to bene�t many NLU-related tasks. Aside from building blocks,

we also consider new inductive biases for training NLU systems, e.g., non-Euclidean

(hyperbolic) spaces and/or Quaternion (hypercomplex) representations for e�cient

learning of NLU models. With this regard, to ascertain the e�ectiveness of these

general-purpose components, we occasionally conduct additional experiments on

allied problem domains such as sentiment analysis and/or machine translation.

Intuitively, the bene�ts and impact of NLU systems and modules are not limited

to traditional NLU problems. In this thesis, we also consider NLU inspired appli-

cations for leveraging vast amounts of textual data on the web for building and

enhancing recommender systems, bridging the �eld of NLP and data mining.

The following subsections delve into the focus areas of this thesis.

1.3.1 Natural Language Inference (NLI)

This task may also be referred to as recognizing textual entailment (RTE) [44] and

aims to understand the relation between two sentences. The goal of this task is

to determine the relationship between two sentences (premise and hypothesis). In

most cases, this is framed as a multi-class classi�cation problem, predicting either
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entail, contradict or neutral relations between two sentences. For example, three

examples of these relations are described as follows:

� Entailment :

{ Premise: The man is swimming in the pool with his friends.

{ Hypothesis: The man is wet.

� Contradiction :

{ Premise: The man is swimming in the pool with his friends.

{ Hypothesis: The man is reading a book.

� Neutral :

{ Premise: The man is swimming in the pool with his friends.

{ Hypothesis: It is a sunny day.

In the �rst example, it is clear that if the man is swimming in the pool, hemust

be wet. This is why the hypothesis entails the premise. In the second example,

it is generally impossible to be reading a book while swimming. Therefore, both

statements contradict each other. In the third case, while it might be plausible

that the man is swimmingbecauseit is sunny, we are not able to infer this directly.

These examples are often classi�ed as neutral because they are not directly entailed

or contradicted. While examples may be subjective, NLI corpora is often curated

with inter-annotator agreement in mind and by taking the majority vote.

While NLI may seem not to have anydirect applications, it is generally used as

natural language understanding (NLU) benchmark, acting as a test bed for com-

plex language understanding. Furthermore, trained NLI models can be typically

deployed to support search systems or fact veri�cation systems, for example, de-

termining if an extracted answer makes sense. Nevertheless, one major key goal of

NLI is to push for models that are capable of understanding the rich nuances of

language.
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1.3.2 Question Answering and Machine Reading Compre-

hension

Question Answering (QA) is a well-established line of research, owing largely to

its wide adoption across many applications. QA is often linked to language un-

derstanding in the sense that machines have to understand in order to answer

questions. This is also commonly known asmachine comprehensionor reading

comprehension, and is used interchangeably throughout this thesis. In this task,

the input format is a query and a context document (given). The goal is to �nd

the correct answer within the given context document. The task is coined ascom-

prehensiondue to the fact that it allows evaluation of a machine's ability to read

and understand documents.

In many standard MRC problems [1, 47, 48], this task is concerned with extracting

the relevant answer from the provided document. However, there has been recent

work that pushes for generative QA systems [49], requiring answers to be generated

instead. MRC systems are highly sought after in industrial search applications,

providing �ne-grained language understanding capabilities to standard information

retrieval applications.

1.3.3 Retrieval-based Natural Language Understanding

In reality, the entire QA/MRC application pipeline requires documents to bere-

trieved and then read by NLU systems. Within the context of MRC systems, this

is often referred to as open domain QA. To this end, open domain question an-

swering and several challenging benchmarks such as SearchQA [48] and TriviaQA

[47] are focused on these settings.

Prior to the development of MRC-based QA systems, retrieval-based QA systems

are commonplace [50{52]. In fact, the MRC paradigm is a recent advance made

possible by pointer network-based neural architectures [53, 54]. Past years of neural

NLU research have typically considered the retrieval setting of ranking answers

given questions [50] or ranking responses given messages [55]. Many applications

fall under the retrieval-based NLU framework, e.g., question answering (question-

answer), dialogue prediction (message-reply) [56] and social media search (tweet-

reply) [36].
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The study of powerful retrieval models is also essential to the entire NLU vision

and pipeline.

1.3.4 Natural Language Understanding for Recommender

Systems

While QA is an obvious use case of NLU systems, this thesis also considers the

compelling use case of using NLU systems (on the web) for recommending items to

users. Across a wide number of web applications (e.g., Yelp, Amazon, etc.), there

exists reviews and user-generated content that users may contribute. By leveraging

neural modules built for general NLU (NLI/QA) applications, this taps into the

potential of vast amounts of textual data found on the web.

1.3.5 Neural Building Blocks for Natural Language Under-

standing

Neural architectures for NLU are typically composed of sub-modules that perform

a range of operations such as reasoning, sequence encoding, or prediction. For

example, recurrent [18, 19], convolutional [57, 58] or attention modules [24] are

indispensable in the deep learning for NLP today. As such, research and innovation

at this level can potentially have a positive impact across many NLU applications.

To this end, the development of reasoning and/or encoding modules is also a focal

point of this thesis.

1.4 Major Contributions

This section describes the key contributions of this thesis.
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1.4.1 Factorized Neural Attention Models for Natural Lan-

guage Inference

We study the natural language inference (NLI) problem, a core task in natural lan-

guage understanding. We proposed a new e�cient attention layer based on align-

ment factorization and an overall lightweight model which we call CAFE (ComProp

Alignment Factorized Encoders [59]). CAFE achieves state-of-the-art performance

on the Stanford Natural Language Inference (SNLI) dataset with far fewer parame-

ters compared to competitors. The key idea here is the development of an e�cient

model that models the low-rank structure of alignment between sentence-pairs

(e.g., alignment factorization). In addition, we also propose a deeper (hierarchical)

extension of CAFE, CSRAN (Co-stack Residual A�nity Networks [60]). CSRAN

introduces a new co-stacking a�nity (CSRA) mechanism along with a multi-level

attention re�nement (MAR) mechanism. The key idea of CSRA and MAR is to

leverage CAFE modules across stacked BiRNN encoders. We show that the exten-

sion, CSRAN outperforms CAFE on standard benchmarks.

1.4.2 Multi-Cast Attention Networks for Retrieval-based

Natural Language Understanding

We study the retrieval-based NLU problem. Inspired by the previous work on

natural language inference, we extend the premise-hypothesis setting to retrieval

based, two tower problems. Moreover, retrieval-based NLU also is essential to the

entire NLU pipeline, given that it is often used as a candidate �ltering step for

many MRC or advanced NLU models. We propose a Multi-Cast Attention and

an overall model framework (i.e., MCAN) [61]. This work builds upon ideas from

the previous contribution (i.e., CAFE model), but adapts it to retrieval tasks, e.g.,

answer retrieval and dialogue prediction. More concretely, we integrate various

max, mean, alignment and intra based pooling attentions into a form ofmulti-

headedarchitecture, achieving state-of-the-art results on all retrieval-based NLU

tasks.
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1.4.3 Densely Connected Attention Propagation for Ma-

chine Reading Comprehension

We study the problem of web-based machine reading comprehension (MRC) and

propose a new model that advances the state-of-the-art. Web-based MRC can be

considered as a harder problem to NLI and retrieval-based NLU. Hence, we are

interested to design powerful architectures for this task. To this end, we propose

a new dense attention network and the �rst usage of attention as a residual con-

nector. The proposed Densely Connected Attention Propagation (DecaProp) [62],

comprise the novel DecaEnc (DecaEncoder) and DecaCore modules. DecaProp

achieves state-of-the-art performance on multiple well-established machine read-

ing comprehension benchmarks (NewsQA [46], SearchQA [48], Quasar [63] and

NarrativeQA[64]), covering a broad range of domains (News, Web Documents,

Stories, etc.)

1.4.4 Introspective Curriculum Pointer-Generator for Ma-

chine Reading Comprehension over Long Narratives

We study the challenging problem of MRC over narratives (full stories and nov-

els). This problem is extremely hard, given that full stories easily comprises ten of

thousands of words. While previous contributions are focused on achieving stellar

performance on standard documents, this contribution aims to push the read-

ing comprehension paradigm further. We propose a new Introspective Alignment

Reader (IAL Reader), along with a Curriculum Learning-based Pointer-Generator

network (IAL-CPG) [65]. The IAL Reader is characterized by block-based local

self-attention, which enables scalability bene�ts for extremely long documents. The

key idea is a form of curriculum-based data augmentation, facilitated by generative

pretraining on the 
y. We achieve state-of-the-art results on the full story setting

of the NarrativeQA challenge by Google Deepmind [49].
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1.4.5 Natural Language Understanding for Recommender

Systems

We study the problem of learning to recommend on web platforms such as Amazon

or Yelp. While previous contributions have demonstrated the promise of neural and

attention models on NLU tasks, the key idea of this chapter is to leverage NLU-

based ideas for recommender systems. We propose an NLU-based framework based

on hierarchical co-attention pointers (i.e., Multi-Pointer Co-Attention Networks

(MPCN)) [66] for selecting appropriate reviews to learn representations of users and

items. Overall, we use NLU-based reasoning techniques for reasoning with user-

generated reviews. All in all, the proposed method bridges recommender systems

with natural language understanding (NLU), leveraging the general-purpose tools

and ideas from language inference to the recommender system community.

1.4.6 Multi-Granular Sequence Encoders for Natural Lan-

guage Understanding

Aside from attention modules, sequence encoding is a crucial component in NLU.

We have proposed reasoning architectures for a suite of NLU tasks. This contri-

bution makes orthogonal improvements to the overall problem of NLU, focusing

on the encoding module. We introduce a fast and expressive sequence encoder for

reading comprehension. To this end, we propose Dilated Composition Units (DCU)

[67], which parameterizes the gating units of a recurrent cell with multi-granular

composition functions. The DCU unit comprises a novel fold-unfold operation

along with a multi-granular reasoning module. The proposed DCU unit is eval-

uated on several MRC benchmarks, achieving greater e�ciency and performance

compared to LSTMs and GRUs. Moreover, we propose a Bi-Attention framework

that incorporates DCU units, achieving state-of-the-art results on the RACE [43]

benchmark.
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1.4.7 Recurrently Controlled Recurrent Networks for Nat-

ural Language Understanding

Sequence encoders such as convolutional neural networks and recurrent neural net-

works are fundamental and pivotal components in many neural models for NLU.

We propose Recurrently Controlled Recurrent Networks (RCRN) [68], a new re-

current unit that learns its recurrent gating functions via another recurrent model.

We show that RCRN achieves very promising results on several NLU and NLP

tasks. Compared to the DCU and other encoding modules, RCRN is designed to

be very expressive and powerful.

1.4.8 Hyperbolic Representations for Natural Language Un-

derstanding

We propose a new, simple and e�cient retrieval-based NLU model based on hy-

perbolic representations (HyperQA) [2]. While many of the contributions of this

thesis are mainly targeted at good performance, there may be occasions that call

for mobile-friendly, lightweight and e�cient models. Moreover, aside from neural

architectures, we postulate that alternative representation learning methods can be

useful. To this end, we propose learning neural NLU models in hyperbolic space,

imbuing word and sentence representations with hierarchical inductive biases, i.e.,

hyperbolic space is a geometrically conducive embedding space for learning tree-

structured representations, owing to mainly non-uniform notion of the distance

across the vector space. We show that HyperQA achieves competitive results in

many attention-based and highly parameterized models in the literature. While

HyperQA does not achieve state-of-the-art, it certainly serves as a good option for

e�cient deployment.

1.4.9 Quaternion Representations for Natural Language Un-

derstanding

We have previously established that model e�ciency is critical to real-world ap-

plications. We explore learning e�cient representations by training Quaternion

models of language. Quaternions are Hypercomplex numbers (one real component
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Figure 1.1: Hierarchy of Proposed Contributions.

Chapter Model Publication
3 CAFE [59], CSRAN [60] EMNLP'18
4 MCAN [61] KDD'18
5 DecaProp [62] NeurIPS'18
6 IAL-CPG [65] ACL'19
7 MPCN [66] KDD'18
8 DCU [67] EMNLP'18
9 RCRN [68] NeurIPS'18
10 HyperQA [2] WSDM'18
11 Quaternion NLP [69] ACL'19

Table 1.1: Overview of contributions.

and three imaginary components). The Hamilton product encourages inter-latent

components, along with a neat form of weight sharing property. This enables up

to four times of parameter savings. We propose Quaternion Attention Models and

Quaternion Transformers [69]. We run experiments on a suite of NLU (and al-

lied/related problems) tasks. Overall, we show that Quaternion NLU models are

capable of comparable performance while achieving 4 times parameter savings.

Finally, the major contributions of this thesis are summarized in Table 1.1. A

hierarchical representation of the proposed contributions is depicted at Figure 1.1.

1.5 Organization of the Thesis

Chapter 1 presents the scope and overview of this thesis.

Chapter 2 reviews the related work of deep learning for natural language under-

standing.
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Chapter 3 introduces CompProp Alignment-Factorized Encoders (CAFE) for nat-

ural language inference that advances the existing state-of-the-art. This model

utilizes factorized attention in a ComProp (compare-propagate) architecture. This

chapter also introduces Co-stack Residual A�nity Aetworks (CSRAN), an ex-

tended multi-layered adaptation of CAFE.

Chapter 4 introduces Multi-Cast Attention Networks (MCAN) for a suite of retrieval-

based NLU problems. The key idea is to combine various multiple attention 
avors

and variants (multi-casting). MCAN achieves state-of-the-art on all retrieval-based

NLU tasks.

Chapter 5 introduces Densely Connected Attention Propagation (DecaProp), a

new model that achieves state-of-the-art on highly competitive machine reading

comprehension benchmarks. The key idea is to propagate and densely connect an

entire MRC model using attention connectors.

Chapter 6 introduces Introspective Alignment Reader and Curriculum Pointer Gen-

erator (IAL-CPG) for machine reading comprehension over extremely long narra-

tives (stories and full novels). The key idea is to use a curriculum learning scheme

in conjunction with a side generative model. This simulates generative pre-training

and data augmentation. IAL-CPG achieves state-of-the-art on the Google Deep-

mind Reading Comprehension challenge.

Chapter 7 demonstrates the e�ectiveness of NLU models on the recommender sys-

tem. This chapter introduces Multi-Pointer Co-Attention Networks, a state-of-the-

art model for utilizing user-generated reviews for recommendation on the web.

Chapter 8 introduces Dilated Composition Units (DCU), a fast, e�cient, and highly

expressive sequence encoder. We show that DCU outperforms staple LSTM/GRU

units on several NLU benchmarks.

Chapter 9 introduces Recurrently Controlled Recurrent Networks (RCRN), a novel

RNN encoder. In this model, we parameterize the recurrent gating functions with

another RNN in a controller-listener architecture. RCRN outperforms stacked

BiLSTMS on 26 NLP/NLU datasets.

Chapter 10 introduces hyperbolic representations for natural language understand-

ing. We show that an e�cient model with a low number of parameters can achieve

good performance, comparable to many advanced models in the literature. The
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key idea is to encode hyperbolic inductive bias through the means of the distance

function.

Chapter 11 introduces Quaternion representations for natural language understand-

ing. The key idea is that Quaternion representations enable four times of parameter

savings by weight sharing between imaginary components. We propose Quaternion

Attention and Quaternion Transformers, demonstrating that competitive perfor-

mance can be attained even at much lower parameterization.

Chapter 12 gives a conclusion of this thesis, and presents new challenges and di-

rections for future work.



Chapter 2

Literature Review

Deep learning (i.e., gradient-based learning) [70, 71] has made insurmountable

progress in recent years. The �eld of natural language has indeed a lot to gain

from the deep learning revolution [17, 24, 34]. To this end, almost, if not all,

language-based tasks from question answering to semantic parsing are dominated

by neural architectures today [13, 14, 24]. Neural architectures are a composition

of di�erentiable functions. As a whole, they serve as an inductive bias for learning

from data. This section discusses the general architectures for many NLU models

and tasks. It is also good to note that the scope of this thesis will be mainly based

on supervised learning.

In this chapter, we review the core NLP tasks (e.g., Natural language inference

and Machine Reading Comprehension). Then, we review the fundamental neural

architectures for NLU. Note that the �rst four chapters are pertaining to the NLU

tasks while the �fth chapter provides the necessary background for the thesis. A

summary of the used benchmarks and datasets is reported at Table .

2.1 Natural Language Inference

The task of NLI is to determine the relation between two sentences, i.e., whether

they entail or contradict each other. Natural language inference (or textual entail-

ment recognition) is a long standing problem in NLP research, typically carried

out on smaller datasets using traditional methods [72{75].

15
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Dataset Train Dev Test
SNLI 549,367 9,842 9,824
MNLI 392,702 9815/9,796 9832/ 9,847
SciTail 23,596 1,304 2,126
Quora 400,000 50,000 50,000
Squad 87,599 10,570 -

NewsQA 92,549 5116 5126
NarrativeQA 32,747 3,461 10,557

SearchQA 99,820 13,393 27,248
Quasar-T 28496 3000 3000
WikiQA 8672 1130 2351
TrecQA 53417 1148 1517

Ubuntu Dialogue Corpus 1M 50,000 50,000

Table 2.1: Statistics of datasets.

2.1.1 Related Work

The relatively recent creation of 570K human annotated sentence pairs [45] have

spurred on many recent works that use neural networks for NLI. Many advanced

neural architectures have been proposed for the NLI task, with most exploiting

some variants of neural attention which learn to pay attention to important seg-

ments in a sentence [21, 22, 76{78].

Amongst the myriad of neural architectures proposed for NLI, the Enhanced Se-

quential Inference Model (ESIM) [76] is one of the best performing models. The

ESIM, primarily motivated by soft subphrase alignment [21], learns alignments

between BiLSTM encoded representations and aggregates them with another BiL-

STM layer. The authors also proposed the usage of subtractive composition, claim-

ing that this helps model contradictions amongst alignments.

Compare-Aggregate models are also highly popular in NLI tasks. While this term

was coined by [79], many prior NLI models follow this design [21, 76, 80, 81].

The key idea is to aggregate matching features and pass them through a dense

layer for prediction. Wang et el. [80] proposed BiMPM, which adopts multi-

perspective cosine matching across sequence pairs. Wang et al. [79] proposed a

one-way attention and convolutional aggregation layer. Gong et al. [81] learns

representations with highway layers and adopts ResNet for learning features over

an interaction matrix.
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There are several other notable models for NLI. For instance, models that leverage

directional self-attention [82] or Gumbel-Softmax [83]. DGEM is a graph-based

attention model which was proposed together with a new entailment challenge

dataset, SciTail [84]. Pretraining has been known to also be highly useful in the

NLI task. For instance, contextualized vectors learned from machine translation

(CoVe) [85] or language modeling (ELMo) [17] have shown to be able to improve

performance when integrated with existing NLI models.

2.1.2 Benchmarks

The major benchmarks include the Stanford Natural Language Inference (SNLI)

[86] benchmark. The SNLI is the �rst large scale dataset constructed for the

purpose of NLI research. In this dataset, annotators were asked to create premise-

hypothesis pairs based on reference images. Subsequently, MultiNLI [87] was con-

structed, introducing domain-speci�c sentence pairs. SNLI and MultiNLI are key

benchmarks for this task for an extended period of time and �erce competition took

part on the SNLI leaderboard1 across a span of one or two years. While SNLI relied

on reported test scores from papers, MultiNLI incorporated a test server in which

users could only submit predictions. This prevented over�tting on the released

test set. Subsequently, following the popularity of SNLI and MultiNLI, more NLI

datasets were constructed, such as SciTail [84] which is based on Science question

answering examples. It is also popular to cast Quora2 question pairs as a NLI

problem (e.g., the task of determining if two questions on Quora are paraphrases).

2.2 Retrieval-based Natural Language Understand-

ing

Retrieval-based NLU has formed the bedrock of many NLU applications. For

example, before the emerging capabilities of pointer-based or generative question

answering, question answering was mainly considered as a retrieval problem (given

questions, retrieve answers). A wide spectrum of NLU applications today still

1https://nlp.stanford.edu/projects/snli/
2https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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fall under the retrieval paradigm (e.g., dialogue prediction, open domain question

answering, social media search, etc.). Notably, retrieval-based NLU has been a key

component in facilitating machine reading comprehension models [40, 88, 89].

2.2.1 Related Work

The dominant state-of-the-art models for retrieval-based NLU today are mostly

neural network based models. Neural network models such as convolutional neu-

ral networks (CNN) [30, 90{92], recurrent neural networks (RNN) [55, 93, 94] or

recursive neural networks [54] are used for learning document representations. A

parameterized function such as multi-layered perceptrons [50], tensor layers [95] or

holographic layers [91] then learns a similarity score between document pairs.

Recent advances in neural ranking models go beyond independent representation

learning. There are several main architectural paradigms that invoke interactions

between document pairs which intuitively improve performance due to matching

at a deeper and �ner granularity. The �rst can be thought of as extracting features

from a constructed word-by-word similarity matrix [96, 97]. The second involves

matching across multiple views and perspectives [80, 98, 99]. The third method

involves learning pairwise attention weights (i.e., co-attention). In these models,

the similarity matrix is used to learn attention weights, learning to attend to each

document based on its partner. Attentive Pooling Networks [100] and Attentive

Interactive Networks [101] are models that are grounded in this paradigm, utilizing

extractive max-poolingto learn the relative importance of a word based on its

maximum importance to all words in the other document. The Compare-Aggregate

model [79] used a co-attention model for matching and then a convolutional feature

extractor for aggregating features.

There are several other notable and novel classes of model architectures which have

been proposed for document search. Examples include knowledge-enhanced mod-

els [55, 102], lexical decomposition [103], fused temporal gates [104] and coupled

LSTMs [105]. Novel metric learning techniques such as hyperbolic spaces have

also been proposed [106]. Zhang et al. [107] proposed a quantum-like model for

matching QA pairs.
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The retriever is a key component in NLU. There have been recent works to combine

retriever-reader interactions. Wang et al. [108] proposed Reinforced Reader Ranker

(R3) which combines reader and retriever with reinforcement learning. The reader's

success is used as a reward for the retriever. Multi-step reasoning and interaction

between reader and retriever were also proposed by Das et al. [40]. Lin et al. [89]

proposed Denoising QA which jointly learns the retriever and reader.

2.2.2 Benchmarks

Many application domains fall under the retrieval-based NLU paradigm. Answer

retrieval benchmarks such as WikiQA [109] and TrecQA [7] have been core bench-

marks for answer retrieval. Commiunity based QA datasets such as Yahoo Answers

or QatarLiving forums are also actively used [52, 101]. Moreover, there have been

several datasets that are concerned with predicting the next dialogue response or

reply. The Ubuntu dialogue corpus [55, 56] is a well-established benchmark for

dialogue prediction.

2.3 Machine Reading Comprehension

The ability for machines to read documents and retrieve answers has been an

extremely recent progress in the NLP research community.

2.3.1 Related Work

Spurred on by the avaliability of data, many neural models have also been proposed

to tackle these challenges. The main technical innovation behind these models can

be characterized as:

� Bidirectional Attention Models - These models include BiDAF [110],

Match-LSTM [34], DCN/DCN+ [111, 112], R-NET [113], DrQA [114], AoA

Reader [115], Reinforced Mnemonic Reader [116], ReasoNet [25], AMANDA

[117]

� Multi-step Reasoning - Reinforced Mnemonic Reader [116], ReasoNet [25]
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� Reinforcement Learning - Reinforced Mnemonic Reader [116], ReasoNet

[25], DCN+ [112], , R3 Reinforced Reader Ranker [88].

� Self-Attention DCN+ [112], QANet [118], AMANDA [117]

Many of these works innovate the attention module. The bidirectional attention,

�rst incepted by [110] provides a strong foundation. Moreover, the answer pointer

layer or span extraction layer [34] also provides the appropriate loss function and

training objective for the task at hand.

2.3.2 Benchmarks

Early datasets, e.g., CNN/Dailymail [5] were largely based on cloze style prediction.

Subsequently, SQuAD (Stanford Question Answering Dataset) [1], became staple

for MRC researchers. SQuAD upped the game, by requiring span selection instead

of simply token-based predictions. While CNN/Dailymail were constructed from

news articles, SQuAD was constructed from Wikipedia articles, averaging at about

200� 300 tokens per document. SQuAD popularized the concept of answer pointers

[34] which enable modern deep learning architectures to train on spans of answer

text. In general, the current models are able to do reasonably well on this task.

Consider the following excerpt from a Wikipedia article about Dr Who.

'Doctor Who is a British science-�ction television programme produced by the BBC

since 1963. The programme depicts the adventures of the Doctor, a Time Lorda

space and time-travelling humanoid alien. He explores the universe in his TARDIS,

a sentient time-travelling space ship. Its exterior appears as a blue British police

box, which was a common sight in Britain in 1963 when the series �rst aired.

Accompanied by companions, the Doctor combats a variety of foes, while working

to save civilisations and help people in need.'

Question from SQuAD consists of questions such as (1)What year did Doctor Who

�rst show on TV? or (2) What type/genre of TV show is Doctor Who?. While

current models worked quite well on this task, it was soon deemed to be not as

di�cult as the community had imagined. For example, if the question involved a

date answer, the model could simply learn to return the only date (1963) in the

document without really performing any form of reasoning.
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A multitude of new datasets and benchmarks were released shortly. NewsQA [46]

focused yet again on MRC on news articles, claiming a greater extent of di�culty

as opposed to SQuAD. RACE [43] proposed MCQ-based QA datasets that were

constructed from real-world examinations in China. TriviaQA [47] proposed the

open-domain setting, in which the context requires some extent of pre-retrieval

before any �ne-grained reading can take place. In the similar vein, SearchQA [48]

tries to emulate the full QA pipeline by using documents retrieved by search engines

as MRC input. Quasar [63] is yet another open domain dataset released for this

same purpose. Many of the above mentioned datasets involve either extracting

the answer or selecting the correct answer from a list of choices. NarrativeQA [64]

proposed an extremely challenging benchmark of requiring machines to read entire

novels and stories. In its dataset, exact answers may or may not be found in the

story and hence, a generative approach becomes mandatory.

2.4 Text-based Recommender Systems

While recommender system research has often little to do with language under-

standing, this thesis demonstrates how NLU may be used to improve recommender

systems.

2.4.1 Related Work

The utility of exploiting reviews for recommendations have been extensively dis-

cussed and justi�ed in many works [119{123]. This not only enables a mitigation

of cold-start issues but also provides a richer semantic modeling of user and item

characteristics. While relatively earlier works have mainly concentrated e�orts on

topic modeling and language modeling approaches [122, 124, 125], the recent shift

towards deep learning models is prominent. The advantages of neural architectures

are clear, i.e., not only do these models dispense with laborious feature engineering

altogether, they are often highly competitive. In many recent works, Convolutional

Neural Networks (CNN) act as automatic feature extractors, encoding a user (item)

into a low-dimensional vector representation. User and item embeddings are then

compared with a matching function.
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An earlier neural model, the Deep Co-operative Neural Networks (DeepCoNN)

[119] represents a user as all the reviews that he (she) has written. Likewise, an

item is represented as all the reviews ever written (by other users) for it. User

and item documents are then encoded with CNNs and passed into a Factorization

Machine (FM) [126] for matching. It was later argued that DeepCoNN's competi-

tive performance exploits the fact that test reviews were leaked (into the training

set) [120]. As such, this reduces the recommendation problem to resemble a noisy

adaptation of standard document-level sentiment analysis. To this end, Catherine

and Cohen [120] proposed TransNets, augmenting a DeepCoNN-like neural net-

work with an additional multi-task learning scheme. More speci�cally, it learns to

transform the penultimate hidden layer of DeepCoNN into a CNN-encoded rep-

resentation of the test review. This signal was found to be useful, improving the

performance on multiple benchmarks.

DeepCoNN and TransNet are relatively simple model architectures. Another re-

cently proposed model, the Dual Attention CNN model (D-ATT) [123] proposed

augmenting CNNs with neural attention. The key idea of neural attention [23] is to

emphasize important segments of documents by weighting each word by a learned

attention vector. The �nal representation comprises a weighted linear combination

of all input embeddings. Two variants of attention mechanism are proposed, i.e.,

local and global, both modeling di�erent views of user-item review documents.

In many ways, the review-based recommender system involves modeling interaction

between user and item reviews. It is intuitive and easy to see that this can model

many NLU problems (e.g., premise-hypothesis and query-document based NLU).

Hence, we postulate that review-based recommender systems can be signi�cantly

improved using NLU techniques.

2.4.2 Benchmarks

Experiments on text-based recommendation have been mainly conducted on Ama-

zon, Yelp or BeerAdvocate reviews [119, 120]. Yelp is an online review platform for

businesses such as restaurants, bars, spas, etc. The dataset from the Yelp dataset

challenge3 is frequently used. On the other hand, Amazon reviews [127, 128] are

3https://www.yelp.com/dataset/challenge
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mainly concerned with user interaction behaviour and the reviews they have writ-

ten on the Amazon commerce platform.

2.5 Neural Building Blocks for NLU

This section provides an overview of the core building blocks in NLU research.

2.5.1 Recurrent Neural Networks

This section brie
y discusses Recurrent Neural Networks (RNNs). In particular,

we focus on Long Short-Term Memory Networks (LSTM) [18] and Gated Recurrent

Units (GRU) [19] which are the most popular encoding units for NLU applications.

Long Short-Term Memory (LSTM) LSTM augments vanilla RNNs with gat-

ing functions. LSTMs operate via a recurrent loop, processing sequences one time-

step at a time. The overall LSTM function can be described as follows:

ht ; ct = LSTM (x t ; ht � 1; ct � 1) (2.1)

where ht is the hidden state at time stept and ct is the cell state at time stept.

More speci�cally, the internal loop of the LSTM unit is de�ned as:

i t = � (Wi x t + Ui ht � 1 + bi )

f t = � (Wf x t + Uf ht � 1 + bf )

ct = f tct � 1 + i t tanh(Wcx t + Ucht � 1 + bc)

ot = � (Wox t + Uoht � 1 + bo)

ht = ot tanh(ct )

where � (:) is the sigmoid activation function. i t ; f t and ot are the input, forget

and output gates of the LSTM cell. W� ; U� ; b� are the parameters of the LSTM

unit where � 2 f i; f; o; cg. The incorporation of gating functions are targetted at

combating the vanishing/exploding gradient problem, as well as enabling expressive

modeling of dependencies over time.
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Gated Recurrent Units (GRUs) GRUs are a variant of RNNs that are con-

sidered lightweight variants of LSTM units.

ht = GRU(x t ; ht � 1) (2.2)

GRUs dispense away with the cell state. Instead, it only relies on an update gate

and reset gate. The internal loop of the GRU cell is written as:

zt = � (Wzx t + Uzht � 1 + bz)

r t = � (Wr x t + Ur ht � 1 + br )

ĥt = tanh(Wh x t + Uh(r tht � 1) + bh)

ht = zt ht � 1 + (1 � zt ) ĥt

whereht is the hidden state at time stept, and zt and r t are the update gate and

reset gate at time stept respectively. � is the sigmoid function. x t is the input to

the GRU unit at time step t.

Bidirectional Variants LSTM and GRU units are often used in abidirectional

fashion. In this case, the input sequence is parsed from both ends and then concate-

nated to form the output representation. It is common to refer to these networks

as BiLSTMs and/or BiGRUs.

Recent Progress in Recurrent Network Research In lieu of the fact that

LSTM units date back to 1970s [18], it would be interesting to investigate the re-

cent advances in recurrent neural network research. There have been interesting

uses of parameterizing recurrent gates with convolution [129]. Sparse Attentive

Backtracking [130] exploits attention in recurrent units for fast access to previ-

ous hidden states. Relational Recurrent Networks [131] leverages self-attention

for relational reasoning across memory cells within recurrent units. The usage of

convolution [132] and/or dilation [133] within recurrent cells is also notable [134].

Exploring novel inductive biases such as non-Euclidean Hyperbolic RNNs [135],

complex RNNs [136] and/or Hypercomplex Quaternion RNNs [137] have also been

a promising direction.
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2.5.2 Neural Attention

Learning relative importance amongst sequence inputs is the core principle in neu-

ral attention models. Attention, alone, has been one of the major driving forces of

modern deep learning research. Though simple, this simple paradigm has demon-

strated to not only be pervasive but also extremely powerful [4, 22{24, 110]. This

was �rst incepted as a form ofalignment mechanism [23] which was used to align

source-target pairs in machine translation. This section discusses several common

variants of attention networks.

Vanilla Attention This is a standard attention module in which the input se-

quence is compared against a context vector. LetH 2 R` � d be the input sequence.

Y = Sof tmax ((QC)> )H (2.3)

whereQ = F (H ) and F (:) is a parameterized function such asF (X ) = WX + b.

C 2 Rd� 1 is a trainable context vector. The output vectorY 2 Rd is a learned

weighted sum of the input sequenceH . This can be interpreted as (1) transform-

ing each input vector, followed by (2) performing a vector-wise dot product with

context vector C and �nally (3) using the output (with softmax) to weight the

original input H .

Cross Attention In vanilla attention, we compute similarity scores with the

context vector. Now let us consider the case where there are two input sequences

and each word in sequenceA attends to all words in B (and vice versa). This can

be written as:

C = Sof tmax (AB > )B

D = Softmax ((AB > )> A

where AB > 2 R`A � `B . C 2 R`B � d and D 2 R`A � d. This formulation is also the

Decomposable Attention [21] proposed for NLI. This formulation learns alignment

between sequences. In this case, the next layer, i.e.,F (C; B) is often used to

compare aligned representations.F (:) is a parameterized function and can be a

feed-forward neural network or recurrent neural network. There have been many
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variations of cross attention which come in various names. For example, Bidirec-

tional Attention [110], Co-attention [111, 112] which have become staple techniques

in MRC. Notably, this form of attention actually performs alignment in similar

spirit to the alignment modules in neural machine translation. It is also good to

note that a separate class of attention modules perform extraction by utilizing max

or mean pooling operations [4, 100, 138, 139]. Although very di�erent in nature,

we may still consider them as cross attention methods due to the fact that they

learn attention weights conditioned on another sequence.

Self-Attention A dominant method in recent literature is to utilize self-attention

for single sequence representation learning [24].

A = Sof tmax (
QK >

p
d

)V; (2.4)

where Q; K; V are linear transforms from the input sequenceH . d is the dimen-

sionality of the input vectors. Note that self-attention is essentially applying cross

attention to the identical input sequence, albeit projected with another set of pa-

rameters. Self-attention was popularized by Transformers [24] although it can be

traced back to earlier work and sometimes referred to as intra-attention [21] or

self-matching [113]. Self-attention layers have been utilized frequently as sequence

encoders (as in machine translation) and are also frequently used in NLU (e.g.,

MRC [118] or NLI [21]).

Scoring Function The three above-mentioned attention modules operate on a

dot-product (or scaled dot-product) similarity. Across the rich history of attention

research, other forms of scoring functions have also been adopted. For example,

Cosine Similarity [140], Additive [23], Location-based Attention [141] or parame-

terizing the scoring function with a bilinear scoring function [141] are representative

examples of scoring function variants. In recent years, novel methods such as Hy-

perbolic Attention [142] or Hermitian Attention [143] have also been proposed.

However, to date, dot-product attention remains the most popular. A plausible

reason is due to GPU-e�cient matrix multiplication. Owing to the quadratic com-

putation and inelegant requirement for tensor tiling, the other scoring functions

may not be preferred.
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2.6 Summary

In this chapter, we provided an overview of the key NLU tasks, namely Natural

Language Inference, Retrieval-based NLU, Machine Reading Comprehension and

Text-based Recommender Systems. We also provided a detailed overview of the

common neural building blocks for NLU such as recurrent neural networks and

attentional models. We also discussed RNN and attention variants. Additionally,

we also discussed recent advances in recurrent neural network research.



Chapter 3

Factorized Neural Attention

Models for Natural Language

Inference

Natural Language Inference (NLI) is a pivotal and fundamental task in language

understanding and arti�cial intelligence. More concretely, given a premise and

hypothesis, NLI aims to detect whether the latterentails or contradicts the former.

As such, NLI is also commonly known as Recognizing Textual Entailment (RTE).

NLI is known to be a signi�cantly challenging task for machines whose success

often depends on a wide repertoire of reasoning techniques. In this chapter1, we

discuss our proposed models for NLI.

3.1 Introduction

In recent years, there has been a steep improvement in NLI systems, largely con-

tributed by the release of the largest publicly available corpus for NLI - the Stanford

Natural Language Inference (SNLI) corpus [45] which comprises 570K hand labeled

1This chapter is published asCompare, Compress and Propagate: Enhancing Neural Architec-
tures with Alignment Factorization for Natural Language Inference, Proceedings of EMNLP 2018
[59] andCo-Stack Residual A�nity Networks with Multi-level Attention Re�nement for Matching
Text Sequences, Proceedings of EMNLP 2018 [60].

28
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sentence pairs. This has improved the feasibility of training complex neural mod-

els, given the fact that neural models often require a relatively large amount of

training data.

Highly competitive neural models for NLI are mostly based on soft-attention align-

ments, popularized by [21, 22]. The key idea is to learn an alignment of sub-phrases

in both sentences and learn to compare the relationship between them. Stan-

dard feed-forward neural networks are commonly used to model similarity between

aligned (decomposed) sub-phrases and then aggregated into the �nal prediction

layers.

Alignment between sentences has become a staple technique in NLI research and

many recent state-of-the-art models such as the Enhanced Sequential Inference

Model (ESIM) [76] also incorporate the alignment strategy. The di�erence here is

that ESIM considers a non-parameterized comparison scheme, i.e.,concatenating

the subtraction and element-wise product of aligned sub-phrases, along with two

original sub-phrases, into the �nal comparison vector. A bidirectional LSTM is

then used to aggregate the compared alignment vectors.

In this chapter, we propose acompare, compress and propagate(ComProp) archi-

tecture where compressed alignment features are propagated to upper layers (such

as an RNN-based encoder) for enhancing representation learning. Then, in order

to achieve an e�cient propagation of alignment features, we propose alignment

factorization layers to reduce each alignment vector to a single scalar valued fea-

ture. Each scalar valued feature is used to augment the base word representation,

allowing the subsequent RNN encoder layers to bene�t from not only global but

also cross sentence information.

There are several major advantages to our proposed architecture. Firstly, our model

is relatively compact, i.e., we compress alignment feature vectors and augment them

to word representations instead. This is to avoid large alignment (or match) vectors

being propagated across the network. As a result, our model is more parameter

e�cient compared to ESIM since the width of the middle layers of the network

is now much smaller. To the best of our knowledge, this is the �rst work that

explicitly employs such a paradigm.

Secondly, the explicit usage of compression enables improved interpretability since

each alignment pair is compressed to a scalar and hence, can be easily visualized.
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Previous models such as ESIM use subtractive operations on alignment vectors,

edging on the intuition that these vectors represent a contradiction. Our model is

capable of visually demonstrating this phenomenon. As such, this design choice

enables a new way of deriving insight from neural NLI models.

Thirdly, the alignment factorization layer is expressive and powerful, combining

ideas from standard machine learning literature [144] with modern neural NLI

models. The factorization layer tries to decompose the alignment vector (con-

structed from the variations ofa� b, a � b and [a; b]), learning higher-order feature

interactions between each compared alignment. In other words, it models the

second-order (pairwise) interactions betweeneach feature in every alignment vec-

tor using factorized parameters, allowing more expressive comparison to be made

over traditional fully-connected layers (FC). Moreover, factorization-based models

are also known to be able to model low-rank structure and reduce risks of over-

�tting. The e�ectiveness of the factorization alignment over alternative baselines

such as feed-forward neural networks is con�rmed by early experiments.

The major contributions of this chapter are summarized as follows:

� We introduce aCompare, Compress and Propagate(ComProp) architecture

for NLI. The key idea is to use the myriad of generated comparison vectors

for augmentation of the base word representation instead of simply aggregat-

ing them for prediction. Subsequently, a standard compositional encoder can

then be used to learn representations from the augmented word representa-

tions. We show that we are able to derive meaningful insight from visualizing

these augmented features.

� For the �rst time, we adopt expressive factorization layers to model the re-

lationships between soft-aligned sub-phrases of sentence pairs. Empirical

experiments con�rm the e�ectiveness of this new layer over standard fully

connected layers.

� Overall, we propose a new neural model -CAFE (ComProp A lignment-

Factorized Encoders) for NLI. The model achieves state-of-the-art perfor-

mance on SNLI, MultiNLI and the newly released SciTail dataset, outper-

forming existing state-of-the-art models such as ESIM. Ablation studies con-

�rm the e�ectiveness of each proposed component in our model.
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Figure 3.1: Architecture of the CAFE model.

� Additionally, we propose a new co-stacking mechanism, leveraging extended

techniques for utilizing CAFE layers. This model, CSRAN (Co-stack Resid-

ual A�nity Networks), outperforms the original CAFE model on NLI tasks.

In the subsequent sections, we provide a layer-by-layer description of our proposed

model architectures, CAFE and CSRAN.

3.2 Proposed Method (CAFE)

The proposed CAFE model accepts two sentences as an input, i.e.,P (premise)

and H (hypothesis). Figure 3.1 illustrates a high-level overview of the proposed

model.
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3.2.1 Input Encoding Layer

This layer aims to learn ak-dimensional representation for each word. Following

[81], we learn feature-rich word representations by concatenating word embeddings,

character embeddings and syntactic (part-of-speech tag) embeddings (provided in

the datasets). Character representations are learned using a convolutional encoder

with max pooling function which is commonly used in many relevant literature

[80, 145].

Highway Encoder Subsequently, we pass each concatenated word vector into a

two-layer highway network [146] in order to learn ak-dimensional representation.

Highway networks are gated projection layers which learn to adaptively control

how much information is being carried to the next layer. The strategy is similar to

[21] which trains the projection layer in place of tuning the embedding matrix. The

usage of highway layers over standard projection layers is empirically motivated.

An intuition would be that the gates in this layer adapt to learn the relative

importance of each word to the NLI task. LetH (:) and T(:) be single layered

a�ne transforms with ReLU and sigmoid activation functions respectively. A single

highway network layer is de�ned as:

y = H (x; WH ) � T(x; WT ) + C � x (3.1)

where C = (1 � T(x; WT )) and WH ; WT 2 Rr � d. Notably, the dimensions of the

a�ne transform might be di�erent from the size of the input vector. In this case,

an additional nonlinear transform is used to projectx to the same dimensionality.

The output of this layer is �P 2 Rk� `P (premise) and �H 2 Rk� `H (hypothesis), with

each word converted to ar -dimensional vector.

3.2.2 Soft-Attention Alignment Layer

This layer describes two soft-attention alignment techniques that are used in the

model.

Inter-Attention Alignment Layer This layer learns an alignment of sub-

phrases between�P and �H . Let F (:) be a standard projection layer with ReLU
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activation function. The alignment matrix of two sequences is de�ned as follows:

eij = F (�pi )> � F (�hj ) (3.2)

whereE 2 R`p � `h and �pi , �hj are the i -th and j -th word in the premise and hypoth-

esis respectively.

� i =
`pX

j =1

exp(eij )
P `p

k=1 exp(eik )
�pj (3.3)

� j =
`hX

i =1

exp(eij )
P `h

k=1 exp(ekj )
�hi (3.4)

where � i is the sub-phrase in �P that is softly aligned to hi . Intuitively, � i is a

weighted sum acrossf pj g
`p
j =1 , selecting the most relevant parts of�P to represent

hi .

3.2.3 Intra-Attention Alignment Layer

This layer learns aself-alignment of sentences and is applied to both�P and �H

independently. For the sake of brevity, let �S represent either �P or �H , the intra-

attention alignment is computed as:

s0
i =

`pX

j =1

exp(f ij )
P `p

k=1 exp(f ik )
�sj (3.5)

wheref ij = G(�si )> � G(�sj ) and G(:) is a nonlinear projection layer with ReLU acti-

vation function. The intra-attention layer models the similarity of each word with

respect to the entire sentence, capturing long distance dependencies and `global'

context of the entire sentence.

3.2.4 Alignment Factorization Layer

This layer aims to learn a scalar valued feature for each comparison between aligned

sub-phrases. Firstly, we introduce our factorization operation, which lives at the

core of our neural model.
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Factorization Operation Given an input vector x, the factorization operation

[144] is de�ned as:

Z (x) = w0 +
nX

i =1

wi x i +
nX

i =1

nX

j = i +1

hvi ; vj i x i x j (3.6)

whereZ(x) is a scalar valued output,h:; :i is the dot product between two vectors

and w0 is the global bias. Factorization machines model low-rank structure within

the matching vector producing a scalar feature. The parameters of this layer are

w0 2 R; w 2 Rr and v 2 Rr � k . The �rst term
P n

i =1 wi x i is simply a linear term.

The second term
P n

i =1

P n
j = i +1 hvi ; vj i x i x j captures all pairwise interactions inx

(the input vector) using the factorization of matrix v.

3.2.5 Inter-Alignment Factorization

This operation compares the alignment between inter-attention aligned represen-

tations, i.e., (� i ; hi ) and (� j ; pj ). Let (a; b) represent an alignment pair, we apply

the following operations:

yc = Z([a; b]) ; ys = Z(a � b) ; ym = Z(a � b) (3.7)

where yc; ys; ym 2 R, Z (:) is the factorization operation, [:; :] is the concatena-

tion operator and � is the element-wise multiplication. The intuition of modeling

subtraction is targeted at capturing contradiction. However, instead of simply con-

catenating the extra comparison vectors, we compress them using the factorization

operation. Finally, for each alignment pair, we obtain three scalar-valued features

which map precisely to a word in the sequence.

3.2.6 Intra-Alignment Factorization

Next, for each sequence, we also apply alignment factorization on the intra-aligned

sentences. Let (s; s0) represent anintra-aligned pair from either the premise or

hypothesis, we compute the following operations:

vc = Z([s; s0]) ; vs = Z(s � s0) ; vm = Z(s � s0) (3.8)
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where vc; vs; vm 2 R and Z(:) is the factorization operation. Applying alignment

factorization to intra-aligned representations produces another three scalar-valued

features which are mapped to each word in the sequence. Note that each of the

six factorization operations has its own parameters but shares them amongst all

words in the sentences.

3.2.7 Propagation and Augmentation

Finally, the six factorized features are then aggregated via concatenation to form

a �nal feature vector that is propagated to upper representation learning layers via

augmentation of the word representation�P or �H .

ui = [ si ; f i
intra ; f i

inter ] (3.9)

wheresi is i -th word in �P or �H , and f i
intra and f i

inter are the intra-aligned [vc; vs; vm ]

and inter-aligned [yc; ys; ym ] features for thei -th word in the sequence respectively.

Intuitively, f i
intra augments each word with global knowledge of the sentence and

f i
inter augments each word with cross-sentence knowledge via inter-attention.

3.2.8 Sequential Encoder Layer

For each sentence, the augmented word representationsu1; u2; : : : u` are then passed

into a sequential encoder layer. We adopt a standard vanilla LSTM encoder.

hi = LSTM (u; i ); 8i 2 [1; : : : `] (3.10)

where` represents the maximum length of the sequence. Notably, the parameters

of the LSTM are siamesein nature, sharing weights between both premise and

hypothesis. We do not use a bidirectional LSTM encoder, as we found that it did

not lead to any improvements on the held-out set. A logical explanation would

be because our word representations are already augmented with global (intra-

attention) information. As such, modeling in the reverse direction is unnecessary,

resulting in some computational savings.
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3.2.9 Pooling Layer

Next, to learn an overall representation of each sentence, we apply a pooling func-

tion across all hidden outputs of the sequential encoder. The pooling function is a

concatenation of temporal max and average (avg) pooling.

x = [max([ h1; � � � h` ]); avg([h1; � � � h` ])] (3.11)

where x is a �nal 2k-dimensional representation of the sentence (premise or hy-

pothesis). We also experimented withsum and avg standalone poolings and found

sum pooling to be relatively competitive.

3.2.10 Prediction Layer

Finally, given a �xed dimensional representation of the premisexp and hypothesis

xh, we pass their concatenation into a two-layerh-dimensional highway network.

Since the highway network has been already de�ned earlier, we omit the technical

details here. The �nal prediction layer of our model is computed as follows:

yout = H2(H1([xp; xh; xp � xh; xp � xh])) (3.12)

whereH1(:); H2(:) are highway network layers with ReLU activation. The output

is then passed into a �nal linear softmax layer.

ypred = sof tmax (WF � yout + bF ) (3.13)

where WF 2 Rh� 3 and bF 2 R3. The network is then trained using standard

multi-class cross entropy loss with L2 regularization.

3.2.11 Additional Discussion

Our proposed method compares and compresses alignment pairs using factorization

layers which leverages the rich history of standard machine learning literature.

The factorization layers incorporate highly expressive factorization machines (FMs)

[144] into neural NLI models. In standard machine learning tasks, FMs remain a
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very competitive choice for learning feature interactions [147] for both standard

classi�cation and regression problems. Intuitively, FMs are adept at handling data

sparsity (typically interactions) by using factorized parameters to approximate a

feature matching matrix. This makes it suitable in our model architecture since

feature interaction between sub-phrase alignment pairs is typically very sparse as

well.

A recent work [148] reports an interesting empirical study pertaining to the ability

of standard FC layers and their ability to model `cross features' (or multiplicative

features). Their overall �nding suggests that while standard ReLU FC layers are

able to approximate 2-way or 3-way features, they are extremely ine�cient in doing

so (requiring either very wide or deep layers). This further motivates the usage

of FMs in this work and is well aligned with our empirical results, i.e., strong

competitive performance with reasonably small parameterization.

3.3 Proposed Method (CSRAN)

This section describes an extended model using CAFE as a base neural building

block which further improves the performance of CAFE. We call this CSRAN

(Co-stacked Residual A�nity Networks) in which the key idea is to present an

extended technique for training a deeper version of CAFE. The key di�erences

between CAFE and CSRAN are as follows:

� CSRAN utilizes multiple RNN encoder layers, i.e., deep stacked LSTMS.

Conversely, CAFE is a shallow model.

� CSRAN presents a new Multi-level Attention Re�nement Model to use CAFE

to re�ne representations for the stacked BiLSTM layer.

� CSRAN presents a new Co-Stack Residual A�nity module that computes

attention weights by considering all stacked layers instead of only the last

layer. This helps to improve the gradient 
ow as well as the expressiveness

of the interaction between premise and hypothesis.

Figure 3.2 describes the architecture of CSRAN.
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Figure 3.2: Architecture of CSRAN.

3.3.1 Input Encoder

The inputs to our model are standard sequences of wordsA and B which represent

sequencea and sequenceb respectively. In the context of di�erent applications,a

and b take di�erent roles such as premise/hypothesis or question/answer. Both se-

quences are converted into word representations (via pretrained word embeddings)

and character-based representations. Character embeddings are trainable param-

eters and a �nal character-based word representation ofd dimensions is learned

by passing all characters into a Bidirectional LSTM encoder. This is standard,

following many works such as [149]. Word embeddings and character-based word

representations are then concatenated to form the �nal word representation. Then,

the word representation is passed through a (optional and tuned as a hyperparam-

eter) 2-layered highway network ofd dimensions.

3.3.2 Stacked Recurrent Encoders

Next, word representations are passed into a stacked recurrent encoder layer.

Speci�cally, we use Bidirectional LSTM encoders at this layer. Letk be the number
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