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Abstract

Empowering machines with the ability to read and reason lives at the heart of

Artificial Intelligence (AI) research. Language is ubiquitous, serving as a key com-

munication mechanism that is woven tightly into the fabric of society and humanity.

The pervasiveness of textual content is made evident by the billions of documents,

social posts, and messages on the web. As such, the ability to make sense, reason

and understand textual content has immense potential to benefit a large range of

real-world applications such as search, question answering, recommender systems,

and/or personal chat assistants.

This thesis tackles the problem of natural language understanding (NLU) and in

particular, problem domains that fall under the umbrella of NLU, e.g., question

answering, machine reading comprehension, natural language inference, retrieval-

based NLU, etc. More specifically, we study machine learning models (in particular,

neural architectures), for solving a suite of NLU problems. The key goal is to enable

machines to be able to read and comprehend natural language.

We make several novel contributions in this thesis, mainly revolving around the

design of neural architectures for NLU problems. The key contributions are listed

as follows:

• We propose two new state-of-the-art neural models for natural language in-

ference: ComProp Alignment-Factorized Encoders (CAFE) and Co-Stack

Residual Affinity Networks (CSRAN). On the single model setting, CAFE

and CSRAN achieves 88.5% accuracy and 88.7% accuracy respectively on

the well-studied SNLI benchmark.

• We propose Multi-Cast Attention Networks (MCAN) for retrieval-based NLU.

On Ubuntu dialogue corpus, MCAN outperforms the existing state-of-the-art

models by 9%. MCAN also achieves the best performing score of 0.838 MAP

and 0.904 MRR on the well-studied TrecQA dataset.

ix
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• We propose Densely Connected Attention Propagation (DecaProp), a new

model designed for machine reading comprehension (MRC) on the web. We

achieve state-of-the-art performance on reading tests on news and Wikipedia

articles. DecaProp achieves 2.6%− 14.2% absolute improvement in F1 score

over the existing state-of-the-art on four challenging MRC datasets.

• We propose Introspective Alignment Reader and Curriculum Pointer-Generator

(IAL-CPG) model for reading and understanding long narratives. IAL-CPG

achieves state-of-the-art performance on the NarrativeQA reading compre-

hension challenge. On metrics such as BLEU-4 and Rouge-L, we achieve a

17% relative improvement over prior state-of-the-art and a 10 times improve-

ment in terms of BLEU-4 score over BiDAF, a strong span prediction based

model.

• We propose Multi-Pointer Co-Attention Networks (MPCN) for recommen-

dation with reviews. On Amazon Reviews dataset, MPCN improves the

existing state-of-the-art DeepCoNN and D-ATT model by up to 71% and 5%

respectively in terms of relative improvement.

• Moreover, we propose two novel general-purpose encoding units for sequence

encoding for natural language understanding: Dilated Compositional Units

(DCU) and Recurrently Controlled Recurrent Networks (RCRN). DCU achieves

state-of-the-art on the RACE dataset, demonstrating improvement over LST-

M/GRU encoders by 6%. On the other hand, RCRN outperforms stacked

BiLSTMs and BiLSTMs across 26 NLP/NLU datasets.

• Finally, we propose two novel techniques for efficient training and infer-

ence of NLU models: HyperQA (Hyperbolic NLU) and Quaternion Atten-

tion/Quaternion Transformer Models. HyperQA outperforms strong atten-

tion and recurrent baselines while being extremely lightweight (40K to 90K

parameters). On the other hand, Quaternion Attention/Quaternion Trans-

formers enable up to 75% parameter reduction while maintaining competitive

performance.
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Chapter 1

Introduction

The ability for machines to understand and reason with language lives at the heart

of Artificial Intelligence (AI) research. After all, language not only plays a pivotal

role in our daily lives but is also central to many forms of human communication.

Language is ubiquitous, residing in documents, the world wide web, chat messages

and/or social media. To this end, enabling machines to understand and reason

with language has the potential to benefit a wide spectrum of these applications,

e.g., question answering [1], search [2, 3], personal assistants and/or recommender

systems [4]. This field, known as natural language understanding (NLU), involves

teaching machines to read and comprehend [5]. It is well-established that incor-

porating a suitable inductive (architectural) bias goes a long way in building NLU

systems. As such, this thesis tackles the problem of designing effective and efficient

neural network architectures for building natural language understanding systems.

1.1 Motivation

Language understanding is indeed an extremely challenging problem. Language

is highly complex and nuanced. For example, understanding intricacies in user

queries alone might already be extremely difficult, let alone understanding entire

documents or chat logs. For many NLU applications, there is also a critical need to

scaling beyond surface-level understanding [5, 6]. Past decades of NLU research has

primarily focused on either feature-based machine learning [7, 8] or structure-based

representations [9, 10]. However, both of which not only do not perform well, but

1
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are also generally limited in their understanding capabilities. Today, many modern

NLU systems (e.g., QA, personal assistants) are largely based on neural network

approaches [11–15].

The beauty of the neural paradigm is multi-fold. Firstly, it is common to com-

pletely dispense with handcrafted features, relying on distributed representations

pre-trained in an unsupervised manner from large corpora (e.g, word embeddings

[16] or pretrained language models [15, 17]). Secondly, a multitude of neural com-

ponents such as sequence encoders also provide a highly effective inductive bias for

modeling the sequential nature of language [18–20]. Thirdly, recent advances such

as attention modules [21–25] facilitate the encoding of reasoning-inspired inductive

biases within networks. Lastly, these neural components are generally modular,

universally applicable and general purpose. In short, they have the potential for

impact beyond the originally intended application. To this end, the research cli-

mate today is often not constrained to a single application but actually considers

the versatility of these neural components. Conversely, in the pre-neural era, many

methods had to be specially tailored to a single application use case.

As such, the design of these core neural building blocks (encoders and/or reasoning

modules) becomes fundamental to NLU research. The design of efficient, highly

performant end-to-end neural architectures, blocks, components, and inductive bi-

ases for natural language understanding forms the central theme of this thesis.

A large driving force behind NLU research stems from industrial demands [26–28].

A wide spectrum of real-world applications enjoy benefits from improvements in

NLU technology. It is easy to enumerate a few key applications, e.g., document

search [29, 30], question answering [25] and/or dialogue systems [11, 31, 32].

As a prime example, the development of advanced NLU systems is central to the

development of advanced search and information retrieval (IR) systems. Tradi-

tionally, many IR systems are based on surface-level features and as a result, face

inherent difficulties with bridging the lexical gap [33]. At this juncture, NLU en-

hanced IR systems are able to better cope with both modeling user queries (or

questions) and documents. This impact spans across a myriad of potential ap-

plications such as web search, question answering systems [5, 34], conversational

systems [11, 35], social media search [36], etc.
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At a deeper level, NLU has closed links to allied problem domains such as com-

monsense reasoning [37], semantics and knowledge representation [38–40]. To this

end, many commonsense reasoning problems have been posed as inference for NLU

problems [41, 42]. It is often difficult to distinguish between these problem areas

given that they often require overlapping capabilities, i.e., in order to understand

language, one requires some levels of basic commonsense. Any application that

requires reasoning and understanding to text can benefit from NLU research.

From a philosophical point of view, the domain of NLU is also highly related to

the core principle of intelligence, i.e., NLU is an intuitive prerequisite for Artificial

General Intelligence (AGI) to manifest. Moreover, the ability for machines to

provide explanations for predictions is also tightly coupled to NLU capabilities

since a machine needs to sufficiently understand language in order to express itself.

In short, language understanding is as fundamental to machines as it is to humans.

The use of neural architectures for NLU (i.e., deep learning for NLU) is a recent and

emerging research area. Works in the recent years have seen progress in challenging

machines to reading comprehension tests [1, 5], solving standardized tests [43]

or commonsense inference [41, 42]. While still in its infancy, the study of these

building blocks for reasoning with language is fundamental to progress in this field.

Despite making reasonably exciting progress in recent years, we (the community)

are still working things out. As such, this is an exciting time and motivating factor

for pursuing NLU research.

1.2 Research Objectives

The main objectives of this thesis are outlined as follows:

• Advance the state-of-the-art across natural language understanding tasks

such as natural language inference, question answering and machine reading

comprehension, retrieval-based NLU and NLU-based recommender systems.

• Propose effective and efficient novel neural models and/or general universal

building blocks for neural NLU systems.
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1.3 Problem Overview and Research Scope

In this thesis, we consider several angles of attack against the challenging problems

of natural language understanding (NLU).

In general, Natural language Inference (NLI) [44, 45], Machine Reading Com-

prehension (MRC) and Question Answering [1, 46, 47] are generally regarded as

core NLU tasks since they explicitly probe for understanding and reasoning. As

such, they are commonly adopted as test beds for evaluating the performance and

progress of designing NLU models. In MRC systems, machines are required to read

a paragraph and answer a question. This is akin to how the education system tests

for a student’s understanding in comprehension examinations.

In lieu of the modular, universally applicable nature of the research climate today,

this thesis also aims to study fundamental building blocks that are commonly used

across many NLU and NLP systems (e.g, recurrent encoders). To this end, the

design of neural building blocks (sequence encoders and/or attention modules) has

immense potential to benefit many NLU-related tasks. Aside from building blocks,

we also consider new inductive biases for training NLU systems, e.g., non-Euclidean

(hyperbolic) spaces and/or Quaternion (hypercomplex) representations for efficient

learning of NLU models. With this regard, to ascertain the effectiveness of these

general-purpose components, we occasionally conduct additional experiments on

allied problem domains such as sentiment analysis and/or machine translation.

Intuitively, the benefits and impact of NLU systems and modules are not limited

to traditional NLU problems. In this thesis, we also consider NLU inspired appli-

cations for leveraging vast amounts of textual data on the web for building and

enhancing recommender systems, bridging the field of NLP and data mining.

The following subsections delve into the focus areas of this thesis.

1.3.1 Natural Language Inference (NLI)

This task may also be referred to as recognizing textual entailment (RTE) [44] and

aims to understand the relation between two sentences. The goal of this task is

to determine the relationship between two sentences (premise and hypothesis). In

most cases, this is framed as a multi-class classification problem, predicting either



Chapter 1 Introduction 5

entail, contradict or neutral relations between two sentences. For example, three

examples of these relations are described as follows:

• Entailment:

– Premise: The man is swimming in the pool with his friends.

– Hypothesis: The man is wet.

• Contradiction:

– Premise: The man is swimming in the pool with his friends.

– Hypothesis: The man is reading a book.

• Neutral:

– Premise: The man is swimming in the pool with his friends.

– Hypothesis: It is a sunny day.

In the first example, it is clear that if the man is swimming in the pool, he must

be wet. This is why the hypothesis entails the premise. In the second example,

it is generally impossible to be reading a book while swimming. Therefore, both

statements contradict each other. In the third case, while it might be plausible

that the man is swimming because it is sunny, we are not able to infer this directly.

These examples are often classified as neutral because they are not directly entailed

or contradicted. While examples may be subjective, NLI corpora is often curated

with inter-annotator agreement in mind and by taking the majority vote.

While NLI may seem not to have any direct applications, it is generally used as

natural language understanding (NLU) benchmark, acting as a test bed for com-

plex language understanding. Furthermore, trained NLI models can be typically

deployed to support search systems or fact verification systems, for example, de-

termining if an extracted answer makes sense. Nevertheless, one major key goal of

NLI is to push for models that are capable of understanding the rich nuances of

language.
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1.3.2 Question Answering and Machine Reading Compre-

hension

Question Answering (QA) is a well-established line of research, owing largely to

its wide adoption across many applications. QA is often linked to language un-

derstanding in the sense that machines have to understand in order to answer

questions. This is also commonly known as machine comprehension or reading

comprehension, and is used interchangeably throughout this thesis. In this task,

the input format is a query and a context document (given). The goal is to find

the correct answer within the given context document. The task is coined as com-

prehension due to the fact that it allows evaluation of a machine’s ability to read

and understand documents.

In many standard MRC problems [1, 47, 48], this task is concerned with extracting

the relevant answer from the provided document. However, there has been recent

work that pushes for generative QA systems [49], requiring answers to be generated

instead. MRC systems are highly sought after in industrial search applications,

providing fine-grained language understanding capabilities to standard information

retrieval applications.

1.3.3 Retrieval-based Natural Language Understanding

In reality, the entire QA/MRC application pipeline requires documents to be re-

trieved and then read by NLU systems. Within the context of MRC systems, this

is often referred to as open domain QA. To this end, open domain question an-

swering and several challenging benchmarks such as SearchQA [48] and TriviaQA

[47] are focused on these settings.

Prior to the development of MRC-based QA systems, retrieval-based QA systems

are commonplace [50–52]. In fact, the MRC paradigm is a recent advance made

possible by pointer network-based neural architectures [53, 54]. Past years of neural

NLU research have typically considered the retrieval setting of ranking answers

given questions [50] or ranking responses given messages [55]. Many applications

fall under the retrieval-based NLU framework, e.g., question answering (question-

answer), dialogue prediction (message-reply) [56] and social media search (tweet-

reply) [36].
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The study of powerful retrieval models is also essential to the entire NLU vision

and pipeline.

1.3.4 Natural Language Understanding for Recommender

Systems

While QA is an obvious use case of NLU systems, this thesis also considers the

compelling use case of using NLU systems (on the web) for recommending items to

users. Across a wide number of web applications (e.g., Yelp, Amazon, etc.), there

exists reviews and user-generated content that users may contribute. By leveraging

neural modules built for general NLU (NLI/QA) applications, this taps into the

potential of vast amounts of textual data found on the web.

1.3.5 Neural Building Blocks for Natural Language Under-

standing

Neural architectures for NLU are typically composed of sub-modules that perform

a range of operations such as reasoning, sequence encoding, or prediction. For

example, recurrent [18, 19], convolutional [57, 58] or attention modules [24] are

indispensable in the deep learning for NLP today. As such, research and innovation

at this level can potentially have a positive impact across many NLU applications.

To this end, the development of reasoning and/or encoding modules is also a focal

point of this thesis.

1.4 Major Contributions

This section describes the key contributions of this thesis.
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1.4.1 Factorized Neural Attention Models for Natural Lan-

guage Inference

We study the natural language inference (NLI) problem, a core task in natural lan-

guage understanding. We proposed a new efficient attention layer based on align-

ment factorization and an overall lightweight model which we call CAFE (ComProp

Alignment Factorized Encoders [59]). CAFE achieves state-of-the-art performance

on the Stanford Natural Language Inference (SNLI) dataset with far fewer parame-

ters compared to competitors. The key idea here is the development of an efficient

model that models the low-rank structure of alignment between sentence-pairs

(e.g., alignment factorization). In addition, we also propose a deeper (hierarchical)

extension of CAFE, CSRAN (Co-stack Residual Affinity Networks [60]). CSRAN

introduces a new co-stacking affinity (CSRA) mechanism along with a multi-level

attention refinement (MAR) mechanism. The key idea of CSRA and MAR is to

leverage CAFE modules across stacked BiRNN encoders. We show that the exten-

sion, CSRAN outperforms CAFE on standard benchmarks.

1.4.2 Multi-Cast Attention Networks for Retrieval-based

Natural Language Understanding

We study the retrieval-based NLU problem. Inspired by the previous work on

natural language inference, we extend the premise-hypothesis setting to retrieval

based, two tower problems. Moreover, retrieval-based NLU also is essential to the

entire NLU pipeline, given that it is often used as a candidate filtering step for

many MRC or advanced NLU models. We propose a Multi-Cast Attention and

an overall model framework (i.e., MCAN) [61]. This work builds upon ideas from

the previous contribution (i.e., CAFE model), but adapts it to retrieval tasks, e.g.,

answer retrieval and dialogue prediction. More concretely, we integrate various

max, mean, alignment and intra based pooling attentions into a form of multi-

headed architecture, achieving state-of-the-art results on all retrieval-based NLU

tasks.
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1.4.3 Densely Connected Attention Propagation for Ma-

chine Reading Comprehension

We study the problem of web-based machine reading comprehension (MRC) and

propose a new model that advances the state-of-the-art. Web-based MRC can be

considered as a harder problem to NLI and retrieval-based NLU. Hence, we are

interested to design powerful architectures for this task. To this end, we propose

a new dense attention network and the first usage of attention as a residual con-

nector. The proposed Densely Connected Attention Propagation (DecaProp) [62],

comprise the novel DecaEnc (DecaEncoder) and DecaCore modules. DecaProp

achieves state-of-the-art performance on multiple well-established machine read-

ing comprehension benchmarks (NewsQA [46], SearchQA [48], Quasar [63] and

NarrativeQA[64]), covering a broad range of domains (News, Web Documents,

Stories, etc.)

1.4.4 Introspective Curriculum Pointer-Generator for Ma-

chine Reading Comprehension over Long Narratives

We study the challenging problem of MRC over narratives (full stories and nov-

els). This problem is extremely hard, given that full stories easily comprises ten of

thousands of words. While previous contributions are focused on achieving stellar

performance on standard documents, this contribution aims to push the read-

ing comprehension paradigm further. We propose a new Introspective Alignment

Reader (IAL Reader), along with a Curriculum Learning-based Pointer-Generator

network (IAL-CPG) [65]. The IAL Reader is characterized by block-based local

self-attention, which enables scalability benefits for extremely long documents. The

key idea is a form of curriculum-based data augmentation, facilitated by generative

pretraining on the fly. We achieve state-of-the-art results on the full story setting

of the NarrativeQA challenge by Google Deepmind [49].
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1.4.5 Natural Language Understanding for Recommender

Systems

We study the problem of learning to recommend on web platforms such as Amazon

or Yelp. While previous contributions have demonstrated the promise of neural and

attention models on NLU tasks, the key idea of this chapter is to leverage NLU-

based ideas for recommender systems. We propose an NLU-based framework based

on hierarchical co-attention pointers (i.e., Multi-Pointer Co-Attention Networks

(MPCN)) [66] for selecting appropriate reviews to learn representations of users and

items. Overall, we use NLU-based reasoning techniques for reasoning with user-

generated reviews. All in all, the proposed method bridges recommender systems

with natural language understanding (NLU), leveraging the general-purpose tools

and ideas from language inference to the recommender system community.

1.4.6 Multi-Granular Sequence Encoders for Natural Lan-

guage Understanding

Aside from attention modules, sequence encoding is a crucial component in NLU.

We have proposed reasoning architectures for a suite of NLU tasks. This contri-

bution makes orthogonal improvements to the overall problem of NLU, focusing

on the encoding module. We introduce a fast and expressive sequence encoder for

reading comprehension. To this end, we propose Dilated Composition Units (DCU)

[67], which parameterizes the gating units of a recurrent cell with multi-granular

composition functions. The DCU unit comprises a novel fold-unfold operation

along with a multi-granular reasoning module. The proposed DCU unit is eval-

uated on several MRC benchmarks, achieving greater efficiency and performance

compared to LSTMs and GRUs. Moreover, we propose a Bi-Attention framework

that incorporates DCU units, achieving state-of-the-art results on the RACE [43]

benchmark.
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1.4.7 Recurrently Controlled Recurrent Networks for Nat-

ural Language Understanding

Sequence encoders such as convolutional neural networks and recurrent neural net-

works are fundamental and pivotal components in many neural models for NLU.

We propose Recurrently Controlled Recurrent Networks (RCRN) [68], a new re-

current unit that learns its recurrent gating functions via another recurrent model.

We show that RCRN achieves very promising results on several NLU and NLP

tasks. Compared to the DCU and other encoding modules, RCRN is designed to

be very expressive and powerful.

1.4.8 Hyperbolic Representations for Natural Language Un-

derstanding

We propose a new, simple and efficient retrieval-based NLU model based on hy-

perbolic representations (HyperQA) [2]. While many of the contributions of this

thesis are mainly targeted at good performance, there may be occasions that call

for mobile-friendly, lightweight and efficient models. Moreover, aside from neural

architectures, we postulate that alternative representation learning methods can be

useful. To this end, we propose learning neural NLU models in hyperbolic space,

imbuing word and sentence representations with hierarchical inductive biases, i.e.,

hyperbolic space is a geometrically conducive embedding space for learning tree-

structured representations, owing to mainly non-uniform notion of the distance

across the vector space. We show that HyperQA achieves competitive results in

many attention-based and highly parameterized models in the literature. While

HyperQA does not achieve state-of-the-art, it certainly serves as a good option for

efficient deployment.

1.4.9 Quaternion Representations for Natural Language Un-

derstanding

We have previously established that model efficiency is critical to real-world ap-

plications. We explore learning efficient representations by training Quaternion

models of language. Quaternions are Hypercomplex numbers (one real component
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Figure 1.1: Hierarchy of Proposed Contributions.

Chapter Model Publication

3 CAFE [59], CSRAN [60] EMNLP’18
4 MCAN [61] KDD’18
5 DecaProp [62] NeurIPS’18
6 IAL-CPG [65] ACL’19
7 MPCN [66] KDD’18
8 DCU [67] EMNLP’18
9 RCRN [68] NeurIPS’18
10 HyperQA [2] WSDM’18
11 Quaternion NLP [69] ACL’19

Table 1.1: Overview of contributions.

and three imaginary components). The Hamilton product encourages inter-latent

components, along with a neat form of weight sharing property. This enables up

to four times of parameter savings. We propose Quaternion Attention Models and

Quaternion Transformers [69]. We run experiments on a suite of NLU (and al-

lied/related problems) tasks. Overall, we show that Quaternion NLU models are

capable of comparable performance while achieving 4 times parameter savings.

Finally, the major contributions of this thesis are summarized in Table 1.1. A

hierarchical representation of the proposed contributions is depicted at Figure 1.1.

1.5 Organization of the Thesis

Chapter 1 presents the scope and overview of this thesis.

Chapter 2 reviews the related work of deep learning for natural language under-

standing.
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Chapter 3 introduces CompProp Alignment-Factorized Encoders (CAFE) for nat-

ural language inference that advances the existing state-of-the-art. This model

utilizes factorized attention in a ComProp (compare-propagate) architecture. This

chapter also introduces Co-stack Residual Affinity Aetworks (CSRAN), an ex-

tended multi-layered adaptation of CAFE.

Chapter 4 introduces Multi-Cast Attention Networks (MCAN) for a suite of retrieval-

based NLU problems. The key idea is to combine various multiple attention flavors

and variants (multi-casting). MCAN achieves state-of-the-art on all retrieval-based

NLU tasks.

Chapter 5 introduces Densely Connected Attention Propagation (DecaProp), a

new model that achieves state-of-the-art on highly competitive machine reading

comprehension benchmarks. The key idea is to propagate and densely connect an

entire MRC model using attention connectors.

Chapter 6 introduces Introspective Alignment Reader and Curriculum Pointer Gen-

erator (IAL-CPG) for machine reading comprehension over extremely long narra-

tives (stories and full novels). The key idea is to use a curriculum learning scheme

in conjunction with a side generative model. This simulates generative pre-training

and data augmentation. IAL-CPG achieves state-of-the-art on the Google Deep-

mind Reading Comprehension challenge.

Chapter 7 demonstrates the effectiveness of NLU models on the recommender sys-

tem. This chapter introduces Multi-Pointer Co-Attention Networks, a state-of-the-

art model for utilizing user-generated reviews for recommendation on the web.

Chapter 8 introduces Dilated Composition Units (DCU), a fast, efficient, and highly

expressive sequence encoder. We show that DCU outperforms staple LSTM/GRU

units on several NLU benchmarks.

Chapter 9 introduces Recurrently Controlled Recurrent Networks (RCRN), a novel

RNN encoder. In this model, we parameterize the recurrent gating functions with

another RNN in a controller-listener architecture. RCRN outperforms stacked

BiLSTMS on 26 NLP/NLU datasets.

Chapter 10 introduces hyperbolic representations for natural language understand-

ing. We show that an efficient model with a low number of parameters can achieve

good performance, comparable to many advanced models in the literature. The
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key idea is to encode hyperbolic inductive bias through the means of the distance

function.

Chapter 11 introduces Quaternion representations for natural language understand-

ing. The key idea is that Quaternion representations enable four times of parameter

savings by weight sharing between imaginary components. We propose Quaternion

Attention and Quaternion Transformers, demonstrating that competitive perfor-

mance can be attained even at much lower parameterization.

Chapter 12 gives a conclusion of this thesis, and presents new challenges and di-

rections for future work.



Chapter 2

Literature Review

Deep learning (i.e., gradient-based learning) [70, 71] has made insurmountable

progress in recent years. The field of natural language has indeed a lot to gain

from the deep learning revolution [17, 24, 34]. To this end, almost, if not all,

language-based tasks from question answering to semantic parsing are dominated

by neural architectures today [13, 14, 24]. Neural architectures are a composition

of differentiable functions. As a whole, they serve as an inductive bias for learning

from data. This section discusses the general architectures for many NLU models

and tasks. It is also good to note that the scope of this thesis will be mainly based

on supervised learning.

In this chapter, we review the core NLP tasks (e.g., Natural language inference

and Machine Reading Comprehension). Then, we review the fundamental neural

architectures for NLU. Note that the first four chapters are pertaining to the NLU

tasks while the fifth chapter provides the necessary background for the thesis. A

summary of the used benchmarks and datasets is reported at Table .

2.1 Natural Language Inference

The task of NLI is to determine the relation between two sentences, i.e., whether

they entail or contradict each other. Natural language inference (or textual entail-

ment recognition) is a long standing problem in NLP research, typically carried

out on smaller datasets using traditional methods [72–75].

15
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Dataset Train Dev Test
SNLI 549,367 9,842 9,824
MNLI 392,702 9815/9,796 9832/ 9,847
SciTail 23,596 1,304 2,126
Quora 400,000 50,000 50,000
Squad 87,599 10,570 -

NewsQA 92,549 5116 5126
NarrativeQA 32,747 3,461 10,557

SearchQA 99,820 13,393 27,248
Quasar-T 28496 3000 3000
WikiQA 8672 1130 2351
TrecQA 53417 1148 1517

Ubuntu Dialogue Corpus 1M 50,000 50,000

Table 2.1: Statistics of datasets.

2.1.1 Related Work

The relatively recent creation of 570K human annotated sentence pairs [45] have

spurred on many recent works that use neural networks for NLI. Many advanced

neural architectures have been proposed for the NLI task, with most exploiting

some variants of neural attention which learn to pay attention to important seg-

ments in a sentence [21, 22, 76–78].

Amongst the myriad of neural architectures proposed for NLI, the Enhanced Se-

quential Inference Model (ESIM) [76] is one of the best performing models. The

ESIM, primarily motivated by soft subphrase alignment [21], learns alignments

between BiLSTM encoded representations and aggregates them with another BiL-

STM layer. The authors also proposed the usage of subtractive composition, claim-

ing that this helps model contradictions amongst alignments.

Compare-Aggregate models are also highly popular in NLI tasks. While this term

was coined by [79], many prior NLI models follow this design [21, 76, 80, 81].

The key idea is to aggregate matching features and pass them through a dense

layer for prediction. Wang et el. [80] proposed BiMPM, which adopts multi-

perspective cosine matching across sequence pairs. Wang et al. [79] proposed a

one-way attention and convolutional aggregation layer. Gong et al. [81] learns

representations with highway layers and adopts ResNet for learning features over

an interaction matrix.
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There are several other notable models for NLI. For instance, models that leverage

directional self-attention [82] or Gumbel-Softmax [83]. DGEM is a graph-based

attention model which was proposed together with a new entailment challenge

dataset, SciTail [84]. Pretraining has been known to also be highly useful in the

NLI task. For instance, contextualized vectors learned from machine translation

(CoVe) [85] or language modeling (ELMo) [17] have shown to be able to improve

performance when integrated with existing NLI models.

2.1.2 Benchmarks

The major benchmarks include the Stanford Natural Language Inference (SNLI)

[86] benchmark. The SNLI is the first large scale dataset constructed for the

purpose of NLI research. In this dataset, annotators were asked to create premise-

hypothesis pairs based on reference images. Subsequently, MultiNLI [87] was con-

structed, introducing domain-specific sentence pairs. SNLI and MultiNLI are key

benchmarks for this task for an extended period of time and fierce competition took

part on the SNLI leaderboard1 across a span of one or two years. While SNLI relied

on reported test scores from papers, MultiNLI incorporated a test server in which

users could only submit predictions. This prevented overfitting on the released

test set. Subsequently, following the popularity of SNLI and MultiNLI, more NLI

datasets were constructed, such as SciTail [84] which is based on Science question

answering examples. It is also popular to cast Quora2 question pairs as a NLI

problem (e.g., the task of determining if two questions on Quora are paraphrases).

2.2 Retrieval-based Natural Language Understand-

ing

Retrieval-based NLU has formed the bedrock of many NLU applications. For

example, before the emerging capabilities of pointer-based or generative question

answering, question answering was mainly considered as a retrieval problem (given

questions, retrieve answers). A wide spectrum of NLU applications today still

1https://nlp.stanford.edu/projects/snli/
2https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

https://nlp.stanford.edu/projects/snli/
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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fall under the retrieval paradigm (e.g., dialogue prediction, open domain question

answering, social media search, etc.). Notably, retrieval-based NLU has been a key

component in facilitating machine reading comprehension models [40, 88, 89].

2.2.1 Related Work

The dominant state-of-the-art models for retrieval-based NLU today are mostly

neural network based models. Neural network models such as convolutional neu-

ral networks (CNN) [30, 90–92], recurrent neural networks (RNN) [55, 93, 94] or

recursive neural networks [54] are used for learning document representations. A

parameterized function such as multi-layered perceptrons [50], tensor layers [95] or

holographic layers [91] then learns a similarity score between document pairs.

Recent advances in neural ranking models go beyond independent representation

learning. There are several main architectural paradigms that invoke interactions

between document pairs which intuitively improve performance due to matching

at a deeper and finer granularity. The first can be thought of as extracting features

from a constructed word-by-word similarity matrix [96, 97]. The second involves

matching across multiple views and perspectives [80, 98, 99]. The third method

involves learning pairwise attention weights (i.e., co-attention). In these models,

the similarity matrix is used to learn attention weights, learning to attend to each

document based on its partner. Attentive Pooling Networks [100] and Attentive

Interactive Networks [101] are models that are grounded in this paradigm, utilizing

extractive max-pooling to learn the relative importance of a word based on its

maximum importance to all words in the other document. The Compare-Aggregate

model [79] used a co-attention model for matching and then a convolutional feature

extractor for aggregating features.

There are several other notable and novel classes of model architectures which have

been proposed for document search. Examples include knowledge-enhanced mod-

els [55, 102], lexical decomposition [103], fused temporal gates [104] and coupled

LSTMs [105]. Novel metric learning techniques such as hyperbolic spaces have

also been proposed [106]. Zhang et al. [107] proposed a quantum-like model for

matching QA pairs.
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The retriever is a key component in NLU. There have been recent works to combine

retriever-reader interactions. Wang et al. [108] proposed Reinforced Reader Ranker

(R3) which combines reader and retriever with reinforcement learning. The reader’s

success is used as a reward for the retriever. Multi-step reasoning and interaction

between reader and retriever were also proposed by Das et al. [40]. Lin et al. [89]

proposed Denoising QA which jointly learns the retriever and reader.

2.2.2 Benchmarks

Many application domains fall under the retrieval-based NLU paradigm. Answer

retrieval benchmarks such as WikiQA [109] and TrecQA [7] have been core bench-

marks for answer retrieval. Commiunity based QA datasets such as Yahoo Answers

or QatarLiving forums are also actively used [52, 101]. Moreover, there have been

several datasets that are concerned with predicting the next dialogue response or

reply. The Ubuntu dialogue corpus [55, 56] is a well-established benchmark for

dialogue prediction.

2.3 Machine Reading Comprehension

The ability for machines to read documents and retrieve answers has been an

extremely recent progress in the NLP research community.

2.3.1 Related Work

Spurred on by the avaliability of data, many neural models have also been proposed

to tackle these challenges. The main technical innovation behind these models can

be characterized as:

• Bidirectional Attention Models - These models include BiDAF [110],

Match-LSTM [34], DCN/DCN+ [111, 112], R-NET [113], DrQA [114], AoA

Reader [115], Reinforced Mnemonic Reader [116], ReasoNet [25], AMANDA

[117]

• Multi-step Reasoning - Reinforced Mnemonic Reader [116], ReasoNet [25]
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• Reinforcement Learning - Reinforced Mnemonic Reader [116], ReasoNet

[25], DCN+ [112], , R3 Reinforced Reader Ranker [88].

• Self-Attention DCN+ [112], QANet [118], AMANDA [117]

Many of these works innovate the attention module. The bidirectional attention,

first incepted by [110] provides a strong foundation. Moreover, the answer pointer

layer or span extraction layer [34] also provides the appropriate loss function and

training objective for the task at hand.

2.3.2 Benchmarks

Early datasets, e.g., CNN/Dailymail [5] were largely based on cloze style prediction.

Subsequently, SQuAD (Stanford Question Answering Dataset) [1], became staple

for MRC researchers. SQuAD upped the game, by requiring span selection instead

of simply token-based predictions. While CNN/Dailymail were constructed from

news articles, SQuAD was constructed from Wikipedia articles, averaging at about

200−300 tokens per document. SQuAD popularized the concept of answer pointers

[34] which enable modern deep learning architectures to train on spans of answer

text. In general, the current models are able to do reasonably well on this task.

Consider the following excerpt from a Wikipedia article about Dr Who.

’Doctor Who is a British science-fiction television programme produced by the BBC

since 1963. The programme depicts the adventures of the Doctor, a Time Lorda

space and time-travelling humanoid alien. He explores the universe in his TARDIS,

a sentient time-travelling space ship. Its exterior appears as a blue British police

box, which was a common sight in Britain in 1963 when the series first aired.

Accompanied by companions, the Doctor combats a variety of foes, while working

to save civilisations and help people in need.’

Question from SQuAD consists of questions such as (1) What year did Doctor Who

first show on TV? or (2) What type/genre of TV show is Doctor Who?. While

current models worked quite well on this task, it was soon deemed to be not as

difficult as the community had imagined. For example, if the question involved a

date answer, the model could simply learn to return the only date (1963) in the

document without really performing any form of reasoning.
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A multitude of new datasets and benchmarks were released shortly. NewsQA [46]

focused yet again on MRC on news articles, claiming a greater extent of difficulty

as opposed to SQuAD. RACE [43] proposed MCQ-based QA datasets that were

constructed from real-world examinations in China. TriviaQA [47] proposed the

open-domain setting, in which the context requires some extent of pre-retrieval

before any fine-grained reading can take place. In the similar vein, SearchQA [48]

tries to emulate the full QA pipeline by using documents retrieved by search engines

as MRC input. Quasar [63] is yet another open domain dataset released for this

same purpose. Many of the above mentioned datasets involve either extracting

the answer or selecting the correct answer from a list of choices. NarrativeQA [64]

proposed an extremely challenging benchmark of requiring machines to read entire

novels and stories. In its dataset, exact answers may or may not be found in the

story and hence, a generative approach becomes mandatory.

2.4 Text-based Recommender Systems

While recommender system research has often little to do with language under-

standing, this thesis demonstrates how NLU may be used to improve recommender

systems.

2.4.1 Related Work

The utility of exploiting reviews for recommendations have been extensively dis-

cussed and justified in many works [119–123]. This not only enables a mitigation

of cold-start issues but also provides a richer semantic modeling of user and item

characteristics. While relatively earlier works have mainly concentrated efforts on

topic modeling and language modeling approaches [122, 124, 125], the recent shift

towards deep learning models is prominent. The advantages of neural architectures

are clear, i.e., not only do these models dispense with laborious feature engineering

altogether, they are often highly competitive. In many recent works, Convolutional

Neural Networks (CNN) act as automatic feature extractors, encoding a user (item)

into a low-dimensional vector representation. User and item embeddings are then

compared with a matching function.
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An earlier neural model, the Deep Co-operative Neural Networks (DeepCoNN)

[119] represents a user as all the reviews that he (she) has written. Likewise, an

item is represented as all the reviews ever written (by other users) for it. User

and item documents are then encoded with CNNs and passed into a Factorization

Machine (FM) [126] for matching. It was later argued that DeepCoNN’s competi-

tive performance exploits the fact that test reviews were leaked (into the training

set) [120]. As such, this reduces the recommendation problem to resemble a noisy

adaptation of standard document-level sentiment analysis. To this end, Catherine

and Cohen [120] proposed TransNets, augmenting a DeepCoNN-like neural net-

work with an additional multi-task learning scheme. More specifically, it learns to

transform the penultimate hidden layer of DeepCoNN into a CNN-encoded rep-

resentation of the test review. This signal was found to be useful, improving the

performance on multiple benchmarks.

DeepCoNN and TransNet are relatively simple model architectures. Another re-

cently proposed model, the Dual Attention CNN model (D-ATT) [123] proposed

augmenting CNNs with neural attention. The key idea of neural attention [23] is to

emphasize important segments of documents by weighting each word by a learned

attention vector. The final representation comprises a weighted linear combination

of all input embeddings. Two variants of attention mechanism are proposed, i.e.,

local and global, both modeling different views of user-item review documents.

In many ways, the review-based recommender system involves modeling interaction

between user and item reviews. It is intuitive and easy to see that this can model

many NLU problems (e.g., premise-hypothesis and query-document based NLU).

Hence, we postulate that review-based recommender systems can be significantly

improved using NLU techniques.

2.4.2 Benchmarks

Experiments on text-based recommendation have been mainly conducted on Ama-

zon, Yelp or BeerAdvocate reviews [119, 120]. Yelp is an online review platform for

businesses such as restaurants, bars, spas, etc. The dataset from the Yelp dataset

challenge3 is frequently used. On the other hand, Amazon reviews [127, 128] are

3https://www.yelp.com/dataset/challenge

https://www.yelp.com/dataset/challenge
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mainly concerned with user interaction behaviour and the reviews they have writ-

ten on the Amazon commerce platform.

2.5 Neural Building Blocks for NLU

This section provides an overview of the core building blocks in NLU research.

2.5.1 Recurrent Neural Networks

This section briefly discusses Recurrent Neural Networks (RNNs). In particular,

we focus on Long Short-Term Memory Networks (LSTM) [18] and Gated Recurrent

Units (GRU) [19] which are the most popular encoding units for NLU applications.

Long Short-Term Memory (LSTM) LSTM augments vanilla RNNs with gat-

ing functions. LSTMs operate via a recurrent loop, processing sequences one time-

step at a time. The overall LSTM function can be described as follows:

ht, ct = LSTM(xt, ht−1, ct−1) (2.1)

where ht is the hidden state at time step t and ct is the cell state at time step t.

More specifically, the internal loop of the LSTM unit is defined as:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ct = ftct−1 + it tanh(Wcxt + Ucht−1 + bc)

ot = σ(Woxt + Uoht−1 + bo)

ht = ot tanh(ct)

where σ(.) is the sigmoid activation function. it, ft and ot are the input, forget

and output gates of the LSTM cell. W∗, U∗, b∗ are the parameters of the LSTM

unit where ∗ ∈ {i, f, o, c}. The incorporation of gating functions are targetted at

combating the vanishing/exploding gradient problem, as well as enabling expressive

modeling of dependencies over time.
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Gated Recurrent Units (GRUs) GRUs are a variant of RNNs that are con-

sidered lightweight variants of LSTM units.

ht = GRU(xt, ht−1) (2.2)

GRUs dispense away with the cell state. Instead, it only relies on an update gate

and reset gate. The internal loop of the GRU cell is written as:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Wh xt + Uh(rtht−1) + bh)

ht = zt ht−1 + (1− zt) ĥt

where ht is the hidden state at time step t, and zt and rt are the update gate and

reset gate at time step t respectively. σ is the sigmoid function. xt is the input to

the GRU unit at time step t.

Bidirectional Variants LSTM and GRU units are often used in a bidirectional

fashion. In this case, the input sequence is parsed from both ends and then concate-

nated to form the output representation. It is common to refer to these networks

as BiLSTMs and/or BiGRUs.

Recent Progress in Recurrent Network Research In lieu of the fact that

LSTM units date back to 1970s [18], it would be interesting to investigate the re-

cent advances in recurrent neural network research. There have been interesting

uses of parameterizing recurrent gates with convolution [129]. Sparse Attentive

Backtracking [130] exploits attention in recurrent units for fast access to previ-

ous hidden states. Relational Recurrent Networks [131] leverages self-attention

for relational reasoning across memory cells within recurrent units. The usage of

convolution [132] and/or dilation [133] within recurrent cells is also notable [134].

Exploring novel inductive biases such as non-Euclidean Hyperbolic RNNs [135],

complex RNNs [136] and/or Hypercomplex Quaternion RNNs [137] have also been

a promising direction.
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2.5.2 Neural Attention

Learning relative importance amongst sequence inputs is the core principle in neu-

ral attention models. Attention, alone, has been one of the major driving forces of

modern deep learning research. Though simple, this simple paradigm has demon-

strated to not only be pervasive but also extremely powerful [4, 22–24, 110]. This

was first incepted as a form of alignment mechanism [23] which was used to align

source-target pairs in machine translation. This section discusses several common

variants of attention networks.

Vanilla Attention This is a standard attention module in which the input se-

quence is compared against a context vector. Let H ∈ R`×d be the input sequence.

Y = Softmax((QC)>)H (2.3)

where Q = F (H) and F (.) is a parameterized function such as F (X) = WX + b.

C ∈ Rd×1 is a trainable context vector. The output vector Y ∈ Rd is a learned

weighted sum of the input sequence H. This can be interpreted as (1) transform-

ing each input vector, followed by (2) performing a vector-wise dot product with

context vector C and finally (3) using the output (with softmax) to weight the

original input H.

Cross Attention In vanilla attention, we compute similarity scores with the

context vector. Now let us consider the case where there are two input sequences

and each word in sequence A attends to all words in B (and vice versa). This can

be written as:

C = Softmax(AB>)B

D = Softmax((AB>)>A

where AB> ∈ R`A×`B . C ∈ R`B×d and D ∈ R`A×d. This formulation is also the

Decomposable Attention [21] proposed for NLI. This formulation learns alignment

between sequences. In this case, the next layer, i.e., F (C,B) is often used to

compare aligned representations. F (.) is a parameterized function and can be a

feed-forward neural network or recurrent neural network. There have been many
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variations of cross attention which come in various names. For example, Bidirec-

tional Attention [110], Co-attention [111, 112] which have become staple techniques

in MRC. Notably, this form of attention actually performs alignment in similar

spirit to the alignment modules in neural machine translation. It is also good to

note that a separate class of attention modules perform extraction by utilizing max

or mean pooling operations [4, 100, 138, 139]. Although very different in nature,

we may still consider them as cross attention methods due to the fact that they

learn attention weights conditioned on another sequence.

Self-Attention A dominant method in recent literature is to utilize self-attention

for single sequence representation learning [24].

A = Softmax(
QK>√

d
)V, (2.4)

where Q,K, V are linear transforms from the input sequence H. d is the dimen-

sionality of the input vectors. Note that self-attention is essentially applying cross

attention to the identical input sequence, albeit projected with another set of pa-

rameters. Self-attention was popularized by Transformers [24] although it can be

traced back to earlier work and sometimes referred to as intra-attention [21] or

self-matching [113]. Self-attention layers have been utilized frequently as sequence

encoders (as in machine translation) and are also frequently used in NLU (e.g.,

MRC [118] or NLI [21]).

Scoring Function The three above-mentioned attention modules operate on a

dot-product (or scaled dot-product) similarity. Across the rich history of attention

research, other forms of scoring functions have also been adopted. For example,

Cosine Similarity [140], Additive [23], Location-based Attention [141] or parame-

terizing the scoring function with a bilinear scoring function [141] are representative

examples of scoring function variants. In recent years, novel methods such as Hy-

perbolic Attention [142] or Hermitian Attention [143] have also been proposed.

However, to date, dot-product attention remains the most popular. A plausible

reason is due to GPU-efficient matrix multiplication. Owing to the quadratic com-

putation and inelegant requirement for tensor tiling, the other scoring functions

may not be preferred.
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2.6 Summary

In this chapter, we provided an overview of the key NLU tasks, namely Natural

Language Inference, Retrieval-based NLU, Machine Reading Comprehension and

Text-based Recommender Systems. We also provided a detailed overview of the

common neural building blocks for NLU such as recurrent neural networks and

attentional models. We also discussed RNN and attention variants. Additionally,

we also discussed recent advances in recurrent neural network research.



Chapter 3

Factorized Neural Attention

Models for Natural Language

Inference

Natural Language Inference (NLI) is a pivotal and fundamental task in language

understanding and artificial intelligence. More concretely, given a premise and

hypothesis, NLI aims to detect whether the latter entails or contradicts the former.

As such, NLI is also commonly known as Recognizing Textual Entailment (RTE).

NLI is known to be a significantly challenging task for machines whose success

often depends on a wide repertoire of reasoning techniques. In this chapter1, we

discuss our proposed models for NLI.

3.1 Introduction

In recent years, there has been a steep improvement in NLI systems, largely con-

tributed by the release of the largest publicly available corpus for NLI - the Stanford

Natural Language Inference (SNLI) corpus [45] which comprises 570K hand labeled

1This chapter is published as Compare, Compress and Propagate: Enhancing Neural Architec-
tures with Alignment Factorization for Natural Language Inference, Proceedings of EMNLP 2018
[59] and Co-Stack Residual Affinity Networks with Multi-level Attention Refinement for Matching
Text Sequences, Proceedings of EMNLP 2018 [60].

28
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sentence pairs. This has improved the feasibility of training complex neural mod-

els, given the fact that neural models often require a relatively large amount of

training data.

Highly competitive neural models for NLI are mostly based on soft-attention align-

ments, popularized by [21, 22]. The key idea is to learn an alignment of sub-phrases

in both sentences and learn to compare the relationship between them. Stan-

dard feed-forward neural networks are commonly used to model similarity between

aligned (decomposed) sub-phrases and then aggregated into the final prediction

layers.

Alignment between sentences has become a staple technique in NLI research and

many recent state-of-the-art models such as the Enhanced Sequential Inference

Model (ESIM) [76] also incorporate the alignment strategy. The difference here is

that ESIM considers a non-parameterized comparison scheme, i.e., concatenating

the subtraction and element-wise product of aligned sub-phrases, along with two

original sub-phrases, into the final comparison vector. A bidirectional LSTM is

then used to aggregate the compared alignment vectors.

In this chapter, we propose a compare, compress and propagate (ComProp) archi-

tecture where compressed alignment features are propagated to upper layers (such

as an RNN-based encoder) for enhancing representation learning. Then, in order

to achieve an efficient propagation of alignment features, we propose alignment

factorization layers to reduce each alignment vector to a single scalar valued fea-

ture. Each scalar valued feature is used to augment the base word representation,

allowing the subsequent RNN encoder layers to benefit from not only global but

also cross sentence information.

There are several major advantages to our proposed architecture. Firstly, our model

is relatively compact, i.e., we compress alignment feature vectors and augment them

to word representations instead. This is to avoid large alignment (or match) vectors

being propagated across the network. As a result, our model is more parameter

efficient compared to ESIM since the width of the middle layers of the network

is now much smaller. To the best of our knowledge, this is the first work that

explicitly employs such a paradigm.

Secondly, the explicit usage of compression enables improved interpretability since

each alignment pair is compressed to a scalar and hence, can be easily visualized.
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Previous models such as ESIM use subtractive operations on alignment vectors,

edging on the intuition that these vectors represent a contradiction. Our model is

capable of visually demonstrating this phenomenon. As such, this design choice

enables a new way of deriving insight from neural NLI models.

Thirdly, the alignment factorization layer is expressive and powerful, combining

ideas from standard machine learning literature [144] with modern neural NLI

models. The factorization layer tries to decompose the alignment vector (con-

structed from the variations of a− b, a� b and [a; b]), learning higher-order feature

interactions between each compared alignment. In other words, it models the

second-order (pairwise) interactions between each feature in every alignment vec-

tor using factorized parameters, allowing more expressive comparison to be made

over traditional fully-connected layers (FC). Moreover, factorization-based models

are also known to be able to model low-rank structure and reduce risks of over-

fitting. The effectiveness of the factorization alignment over alternative baselines

such as feed-forward neural networks is confirmed by early experiments.

The major contributions of this chapter are summarized as follows:

• We introduce a Compare, Compress and Propagate (ComProp) architecture

for NLI. The key idea is to use the myriad of generated comparison vectors

for augmentation of the base word representation instead of simply aggregat-

ing them for prediction. Subsequently, a standard compositional encoder can

then be used to learn representations from the augmented word representa-

tions. We show that we are able to derive meaningful insight from visualizing

these augmented features.

• For the first time, we adopt expressive factorization layers to model the re-

lationships between soft-aligned sub-phrases of sentence pairs. Empirical

experiments confirm the effectiveness of this new layer over standard fully

connected layers.

• Overall, we propose a new neural model - CAFE (ComProp Alignment-

Factorized Encoders) for NLI. The model achieves state-of-the-art perfor-

mance on SNLI, MultiNLI and the newly released SciTail dataset, outper-

forming existing state-of-the-art models such as ESIM. Ablation studies con-

firm the effectiveness of each proposed component in our model.
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Figure 3.1: Architecture of the CAFE model.

• Additionally, we propose a new co-stacking mechanism, leveraging extended

techniques for utilizing CAFE layers. This model, CSRAN (Co-stack Resid-

ual Affinity Networks), outperforms the original CAFE model on NLI tasks.

In the subsequent sections, we provide a layer-by-layer description of our proposed

model architectures, CAFE and CSRAN.

3.2 Proposed Method (CAFE)

The proposed CAFE model accepts two sentences as an input, i.e., P (premise)

and H (hypothesis). Figure 3.1 illustrates a high-level overview of the proposed

model.
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3.2.1 Input Encoding Layer

This layer aims to learn a k-dimensional representation for each word. Following

[81], we learn feature-rich word representations by concatenating word embeddings,

character embeddings and syntactic (part-of-speech tag) embeddings (provided in

the datasets). Character representations are learned using a convolutional encoder

with max pooling function which is commonly used in many relevant literature

[80, 145].

Highway Encoder Subsequently, we pass each concatenated word vector into a

two-layer highway network [146] in order to learn a k-dimensional representation.

Highway networks are gated projection layers which learn to adaptively control

how much information is being carried to the next layer. The strategy is similar to

[21] which trains the projection layer in place of tuning the embedding matrix. The

usage of highway layers over standard projection layers is empirically motivated.

An intuition would be that the gates in this layer adapt to learn the relative

importance of each word to the NLI task. Let H(.) and T (.) be single layered

affine transforms with ReLU and sigmoid activation functions respectively. A single

highway network layer is defined as:

y = H(x,WH) ·T (x,WT ) + C ·x (3.1)

where C = (1 − T (x,WT )) and WH ,WT ∈ Rr×d. Notably, the dimensions of the

affine transform might be different from the size of the input vector. In this case,

an additional nonlinear transform is used to project x to the same dimensionality.

The output of this layer is P̄ ∈ Rk×`P (premise) and H̄ ∈ Rk×`H (hypothesis), with

each word converted to a r-dimensional vector.

3.2.2 Soft-Attention Alignment Layer

This layer describes two soft-attention alignment techniques that are used in the

model.

Inter-Attention Alignment Layer This layer learns an alignment of sub-

phrases between P̄ and H̄. Let F (.) be a standard projection layer with ReLU
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activation function. The alignment matrix of two sequences is defined as follows:

eij = F (p̄i)
> ·F (h̄j) (3.2)

where E ∈ R`p×`h and p̄i, h̄j are the i-th and j-th word in the premise and hypoth-

esis respectively.

βi =

`p∑
j=1

exp(eij)∑`p
k=1 exp(eik)

p̄j (3.3)

αj =

`h∑
i=1

exp(eij)∑`h
k=1 exp(ekj)

h̄i (3.4)

where βi is the sub-phrase in P̄ that is softly aligned to hi. Intuitively, βi is a

weighted sum across {pj}`pj=1, selecting the most relevant parts of P̄ to represent

hi.

3.2.3 Intra-Attention Alignment Layer

This layer learns a self-alignment of sentences and is applied to both P̄ and H̄

independently. For the sake of brevity, let S̄ represent either P̄ or H̄, the intra-

attention alignment is computed as:

s′i =

`p∑
j=1

exp(fij)∑`p
k=1 exp(fik)

s̄j (3.5)

where fij = G(s̄i)
> ·G(s̄j) and G(.) is a nonlinear projection layer with ReLU acti-

vation function. The intra-attention layer models the similarity of each word with

respect to the entire sentence, capturing long distance dependencies and ‘global’

context of the entire sentence.

3.2.4 Alignment Factorization Layer

This layer aims to learn a scalar valued feature for each comparison between aligned

sub-phrases. Firstly, we introduce our factorization operation, which lives at the

core of our neural model.
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Factorization Operation Given an input vector x, the factorization operation

[144] is defined as:

Z(x) = w0 +
n∑
i=1

wi xi +
n∑
i=1

n∑
j=i+1

〈vi, vj〉 xi xj (3.6)

where Z(x) is a scalar valued output, 〈.; .〉 is the dot product between two vectors

and w0 is the global bias. Factorization machines model low-rank structure within

the matching vector producing a scalar feature. The parameters of this layer are

w0 ∈ R, w ∈ Rr and v ∈ Rr×k. The first term
∑n

i=1wi xi is simply a linear term.

The second term
∑n

i=1

∑n
j=i+1〈vi, vj〉 xi xj captures all pairwise interactions in x

(the input vector) using the factorization of matrix v.

3.2.5 Inter-Alignment Factorization

This operation compares the alignment between inter-attention aligned represen-

tations, i.e., (βi, hi) and (αj, pj). Let (a, b) represent an alignment pair, we apply

the following operations:

yc = Z([a; b]) ; ys = Z(a− b) ; ym = Z(a� b) (3.7)

where yc, ys, ym ∈ R, Z(.) is the factorization operation, [.; .] is the concatena-

tion operator and � is the element-wise multiplication. The intuition of modeling

subtraction is targeted at capturing contradiction. However, instead of simply con-

catenating the extra comparison vectors, we compress them using the factorization

operation. Finally, for each alignment pair, we obtain three scalar-valued features

which map precisely to a word in the sequence.

3.2.6 Intra-Alignment Factorization

Next, for each sequence, we also apply alignment factorization on the intra-aligned

sentences. Let (s, s′) represent an intra-aligned pair from either the premise or

hypothesis, we compute the following operations:

vc = Z([s; s′]) ; vs = Z(s− s′) ; vm = Z(s� s′) (3.8)



Chapter 3 Factorized Neural Attention Models 35

where vc, vs, vm ∈ R and Z(.) is the factorization operation. Applying alignment

factorization to intra-aligned representations produces another three scalar-valued

features which are mapped to each word in the sequence. Note that each of the

six factorization operations has its own parameters but shares them amongst all

words in the sentences.

3.2.7 Propagation and Augmentation

Finally, the six factorized features are then aggregated via concatenation to form

a final feature vector that is propagated to upper representation learning layers via

augmentation of the word representation P̄ or H̄.

ui = [si; f
i
intra; f

i
inter] (3.9)

where si is i-th word in P̄ or H̄, and f iintra and f iinter are the intra-aligned [vc; vs; vm]

and inter-aligned [yc; ys; ym] features for the i-th word in the sequence respectively.

Intuitively, f iintra augments each word with global knowledge of the sentence and

f iinter augments each word with cross-sentence knowledge via inter-attention.

3.2.8 Sequential Encoder Layer

For each sentence, the augmented word representations u1, u2, . . . u` are then passed

into a sequential encoder layer. We adopt a standard vanilla LSTM encoder.

hi = LSTM(u, i),∀i ∈ [1, . . . `] (3.10)

where ` represents the maximum length of the sequence. Notably, the parameters

of the LSTM are siamese in nature, sharing weights between both premise and

hypothesis. We do not use a bidirectional LSTM encoder, as we found that it did

not lead to any improvements on the held-out set. A logical explanation would

be because our word representations are already augmented with global (intra-

attention) information. As such, modeling in the reverse direction is unnecessary,

resulting in some computational savings.
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3.2.9 Pooling Layer

Next, to learn an overall representation of each sentence, we apply a pooling func-

tion across all hidden outputs of the sequential encoder. The pooling function is a

concatenation of temporal max and average (avg) pooling.

x = [max([h1, · · ·h`]); avg([h1, · · ·h`])] (3.11)

where x is a final 2k-dimensional representation of the sentence (premise or hy-

pothesis). We also experimented with sum and avg standalone poolings and found

sum pooling to be relatively competitive.

3.2.10 Prediction Layer

Finally, given a fixed dimensional representation of the premise xp and hypothesis

xh, we pass their concatenation into a two-layer h-dimensional highway network.

Since the highway network has been already defined earlier, we omit the technical

details here. The final prediction layer of our model is computed as follows:

yout = H2(H1([xp;xh;xp � xh;xp − xh])) (3.12)

where H1(.), H2(.) are highway network layers with ReLU activation. The output

is then passed into a final linear softmax layer.

ypred = softmax(WF · yout + bF ) (3.13)

where WF ∈ Rh×3 and bF ∈ R3. The network is then trained using standard

multi-class cross entropy loss with L2 regularization.

3.2.11 Additional Discussion

Our proposed method compares and compresses alignment pairs using factorization

layers which leverages the rich history of standard machine learning literature.

The factorization layers incorporate highly expressive factorization machines (FMs)

[144] into neural NLI models. In standard machine learning tasks, FMs remain a



Chapter 3 Factorized Neural Attention Models 37

very competitive choice for learning feature interactions [147] for both standard

classification and regression problems. Intuitively, FMs are adept at handling data

sparsity (typically interactions) by using factorized parameters to approximate a

feature matching matrix. This makes it suitable in our model architecture since

feature interaction between sub-phrase alignment pairs is typically very sparse as

well.

A recent work [148] reports an interesting empirical study pertaining to the ability

of standard FC layers and their ability to model ‘cross features’ (or multiplicative

features). Their overall finding suggests that while standard ReLU FC layers are

able to approximate 2-way or 3-way features, they are extremely inefficient in doing

so (requiring either very wide or deep layers). This further motivates the usage

of FMs in this work and is well aligned with our empirical results, i.e., strong

competitive performance with reasonably small parameterization.

3.3 Proposed Method (CSRAN)

This section describes an extended model using CAFE as a base neural building

block which further improves the performance of CAFE. We call this CSRAN

(Co-stacked Residual Affinity Networks) in which the key idea is to present an

extended technique for training a deeper version of CAFE. The key differences

between CAFE and CSRAN are as follows:

• CSRAN utilizes multiple RNN encoder layers, i.e., deep stacked LSTMS.

Conversely, CAFE is a shallow model.

• CSRAN presents a new Multi-level Attention Refinement Model to use CAFE

to refine representations for the stacked BiLSTM layer.

• CSRAN presents a new Co-Stack Residual Affinity module that computes

attention weights by considering all stacked layers instead of only the last

layer. This helps to improve the gradient flow as well as the expressiveness

of the interaction between premise and hypothesis.

Figure 3.2 describes the architecture of CSRAN.
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Figure 3.2: Architecture of CSRAN.

3.3.1 Input Encoder

The inputs to our model are standard sequences of words A and B which represent

sequence a and sequence b respectively. In the context of different applications, a

and b take different roles such as premise/hypothesis or question/answer. Both se-

quences are converted into word representations (via pretrained word embeddings)

and character-based representations. Character embeddings are trainable param-

eters and a final character-based word representation of d dimensions is learned

by passing all characters into a Bidirectional LSTM encoder. This is standard,

following many works such as [149]. Word embeddings and character-based word

representations are then concatenated to form the final word representation. Then,

the word representation is passed through a (optional and tuned as a hyperparam-

eter) 2-layered highway network of d dimensions.

3.3.2 Stacked Recurrent Encoders

Next, word representations are passed into a stacked recurrent encoder layer.

Specifically, we use Bidirectional LSTM encoders at this layer. Let k be the number
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of layers of the stacked recurrent encoder layer.

hit = BiLSTMi(ht−1) ∀t ∈ [1, 2 · · · `] (3.14)

where BiLSTMi represents the i-th BiLSTM layer and hit represents the t-th hidden

state of the i-th BiLSTM layer. ` is the sequence length. Note that the parameters

are shared for both a and b.

3.3.3 Multi-level Attention Refinement (MAR)

Additionally, we may utilize CAFE blocks between the BiLSTM layers. Each

CAFE block returns six features, which are generated by a factorization operation

using factorization machines (FM). We utilize this in a multi-layered fashion which

we found to have worked well. This constitutes our multi-level attention refinement

mechanism. More concretely, we apply the CAFE operation to the outputs of each

BiLSTM layer, allowing the next BiLSTM layer to process the ‘augmented’ repre-

sentations. The next layer retains its dimensionality by projecting the augmented

representation back to its original size using the BiLSTM encoder. This can be

interpreted as repeatedly refining representations via attention. As such, adding

CAFE blocks is a very natural fit to the stacked recurrent architecture.

This layer is the cornerstone of our proposed approach and is represented as the

middle segment of Figure 3.2 (the colorful matrices).

3.3.4 Co-Stacking

Co-stacking refers to the fusion of a and b across multiple hierarchies. Recall that

the affinity score between two words is typically computed by sij = a>b. We

extend this to a residual formulation. More concretely, the affinity score between

both words is now computed as the maximum influence it has over all layers.

sij = max
∑
p

∑
q

a>pi bqj (3.15)

where api is the i-th word for the p-th stacked layer for a and bqj is the j-th word

for the q-th stacked layer for b. The choice of the maximum operator is intuitive
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and is strongly motivated by the fact that we would like to give a high affinity for

each word pair that shows a strong match at any of different hierarchical stages of

learning representations. Note that this layer can be interpreted as constructing

a matching tensor based on multi-hierarchical information and selecting the most

informative match across all representation hierarchies.

3.3.5 Bidirectional Alignment

In order to learn (bidirectionally) attentive representations, we first concatenate all

stacked outputs to form a ` × kd vector. Next, we apply the following operations

to A ∈ R`a×kd and B ∈ R`b×kd.

Ā = Softmax(S>)B and B̄ = A Softmax(S>) (3.16)

where Ā ∈ R`b×kd, B̄ ∈ R`a×kd are the attentive (aligned) representations.

3.3.6 Matching and Aggregation Layer

Next, we match the attentive (aligned) representations using the subtraction,

element-wise multiplication and concatenation of each aligned word. Subsequently,

we pass this matching vector into a k-layered BiLSTM layer.

a′i = BiLSTMk([b̄i − ai, b̄i � ai, b̄i, ai]) (3.17)

b′i = BiLSTMk([āi − bi, āi � bi, āi, bi]) (3.18)

The final feature representation is learned via the summation across the temporal

dimension as follows:

z = [
`a∑
i=1

a′i ;

`b∑
i=1

b′i] (3.19)

where [.; .] is the concatenation operator.
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3.3.7 Output and Prediction Layer

Next, the model predicts using the feature vector z for every given sequence pair.

At this layer, we utilize standard fully-connected layers. The number of output

layers is typically 2-3 and is a tuned hyperparameter. Softmax is applied onto the

final layer. The final layer is application specific, e.g., k classes for classification

tasks and a two-class softmax for pointwise ranking. For all datasets, we optimize

the cross entropy loss.

3.4 Experiments (CAFE)

In this section, we describe our experimental setup and report the experimental

results for the CAFE model.

3.4.1 Experimental Setup

To ascertain the effectiveness of our models, we use the SNLI [45] and MultiNLI

[87] benchmarks which are standard and highly competitive benchmarks for the

NLI task. We also include the newly released SciTail dataset [84] which is a binary

entailment classification task constructed from science questions. Notably, SciTail

is known to be a difficult dataset for NLI, made evident by the low accuracy scores

even though it is binary in nature.

SNLI The state-of-the-art competitors on this dataset are the BiMPM [80], ESIM

[76] and DIIN [81]. We compare against competitors across three settings. The

first setting disallows cross sentence attention. In the second setting, cross sentence

is allowed. The last (third) setting is a comparison between model ensembles while

the first two settings only comprise single models. Note that we consider the 1st

setting to be relatively less important (since our focus is not on the encoder itself)

but still report the results for completeness.

MultiNLI We compare on two test sets (matched and mismatched) which repre-

sent in-domain and out-domain performance. The main competitor on this dataset
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is the ESIM model, a powerful state-of-the-art SNLI baseline. We also compare

with ESIM + Read [150].

SciTail This dataset only has one official setting. We compare against the re-

ported results of ESIM [76] and DecompAtt [21] in the original paper. We also

compare with DGEM, the new model proposed in [84].

Across all experiments and in the spirit of fair comparison, we only compare with

works that (1) do not use extra training data and (2) do not use external resources

(such as external knowledge bases, etc.). However, for the sake of completeness,

we still report their scores [17, 85, 151].

3.4.2 Implementation Details

We implement our model in TensorFlow [152] and train them on Nvidia P100

GPUs. We use the Adam optimizer [153] with an initial learning rate of 0.0003.

L2 regularization is set to 10−6. Dropout with a keep probability of 0.8 is applied

after each fully-connected, recurrent or highway layer. The batch size is tuned

amongst {128, 256, 512}. The number of latent factors k for the factorization layer

is tuned amongst {5, 10, 50, 100, 150}. The size of the hidden layers of the highway

network layers is set to 300. All parameters are initialized with xavier initialization.

Word embeddings are pre-loaded with 300d GloVe embeddings [16] and fixed during

training. Sequence lengths are padded to batch-wise maximum. The batch order

is (randomly) sorted within buckets following [21].

3.4.3 Experimental Results

Table 3.1 reports our results on the SNLI benchmark. On the cross sentence (sin-

gle model setting), the performance of our proposed CAFE model is extremely

competitive. We report the test accuracy of CAFE at different extents of param-

eterization, i.e., varying the size of the LSTM encoder, width of the pre-softmax

hidden layers and final pooling layer. CAFE obtains 88.5% accuracy on the SNLI

test set, an extremely competitive score on the extremely popular benchmark.

Notably, competitive results can be also achieved with a much smaller parameter-

ization. For example, CAFE also achieves 88.3% and 88.1% test accuracy with
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Table 3.1: Results (CAFE) on the SNLI dataset.

Model Params Train Test
Single Models (w/o Cross Sentence Attention)

300D Gumbel TreeLSTM [83] 2.9M 91.2 85.6
300D DISAN [82] 2.4M 91.1 85.6
300D Residual Stacked Encoders [154] 9.7M 89.8 85.7
600D Gumbel TreeLSTM [83] 10M 93.1 86.0
300D CAFE (w/o CA) 3.7M 87.3 85.9

Single Models
100D LSTM with attention [22] 250K 85.3 83.5
300D mLSTM [77] 1.9M 92.0 86.1
450D LSTMN + deep att. fusion [155] 3.4M 88.5 86.3
200D DecompAtt + Intra-Att [21] 580K 90.5 86.8
300D NTI-SLSTM-LSTM [156] 3.2M 88.5 87.3
300D re-read LSTM [157] 2.0M 90.7 87.5
BiMPM [80] 1.6M 90.9 87.5
448D DIIN [81] 4.4M 91.2 88.0
600D ESIM [76] 4.3M 92.6 88.0
150D CAFE (SUM+2x200D MLP) 750K 88.2 87.7
200D CAFE (SUM+2x400D MLP) 1.4M 89.4 88.1
300D CAFE (SUM+2x600D MLP) 3.5M 89.2 88.3
300D CAFE (AVGMAX+300D HN) 4.7M 89.8 88.5

Ensemble Models
600D ESIM + 300D Tree-LSTM [76] 7.7M 93.5 88.6
BiMPM [80] 6.4M 93.2 88.8
448D DIIN [81] 17.0M 92.3 88.9
300D CAFE (Ensemble) 17.5M 92.5 89.3

External Resource Models
BiAttentive Classification + CoVe + Char [85] 22M 88.5 88.1
KIM [151] 4.3M 94.1 88.6
ESIM + ELMo [17] 8.0M 91.6 88.7
200D CAFE (AVGMAX + 200D MLP) + ELMo 1.4M 89.5 89.0

only 3.5M and 1.5M parameters respectively. This outperforms the state-of-the-

art ESIM and DIIN models with only a fraction of the parameter cost. At 88.1%

accuracy, our model has about three times less parameters than ESIM/DIIN (i.e.,

1.4M versus 4.3M/4.4M). Moreover, our lightweight adaptation achieves 87.7% ac-

curacy with only 750K parameters, which makes it extremely performant amongst

models having the same amount of parameters such as the decomposable attention

model (86.8%).

Finally, an ensemble of 5 CAFE models achieves 89.3% test accuracy, the best test



Chapter 3 Factorized Neural Attention Models 44

Table 3.2: Results (CAFE) on MultiNLI and SciTail datasets.

MultiNLI SciTail

Model Match Mismatch -

Majority 36.5 35.6 60.3
NGRAM# - - 70.6

CBOW[ 65.2 64.8 -

BiLSTM[ 69.8 69.4 -

ESIM#,[ 72.4 72.1 70.6
DecompAtt# - - - 72.3
DGEM# - - 70.8
DGEM + Edge# - - 77.3

ESIM† 76.3 75.8 -
ESIM + Read† 77.8 77.0 -

CAFE 78.7 77.9 83.3
CAFE Ensemble 80.2 79.0 -

scores on the SNLI benchmark2. Overall, we believe that the good performance of

our CAFE can be attributed to (1) the effectiveness of the ComProp architecture

(i.e., providing word representations with global and local knowledge for better

representation learning) and (2) the expressiveness of alignment factorization lay-

ers that are used to decompose and compare word alignments. More details are

given at the ablation study. Finally, we emphasize that CAFE is also relatively

lightweight, efficient and fast to train given its performance. A single run on SNLI

takes approximately 5 minutes per epoch with a batch size of 256. Overall, a single

run takes ≈ 3 hours to get to convergence.

Table 3.2 reports our results on the MultiNLI and SciTail datasets. Models with

†, # and [ are reported from [150], [84] and [87] respectively. On MultiNLI, CAFE

significantly outperforms ESIM, a strong state-of-the-art model on both settings.

We also outperform the ESIM + Read model [150]. An ensemble of CAFE models

achieve competitive result on the MultiNLI dataset. On SciTail, our proposed

CAFE model achieves state-of-the-art performance. The performance gain over

strong baselines such as DecompAtt and ESIM are ≈ 10% − 13% in terms of

accuracy. CAFE also outperforms DGEM, which uses a graph-based attention for

improved performance, by a significant margin of 5%. As such, empirical results

demonstrate the effectiveness of our proposed CAFE model on the challenging

SciTail dataset.

2As of 22nd May 2018, the deadline of the EMNLP submisssion.
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Table 3.3: Ablation study on MultiNLI development sets.

Match Mismatch

Original Model 79.0 78.9

(1a) Rm FM for 1L-FC 77.7 77.9
(1b) Rm FM for 1L-FC (ReLU) 77.3 77.5
(1c) Rm FM for 2L-FC (ReLU) 76.6 76.4

(2) Remove Char Embed 78.1 78.3
(3) Remove Syn Embed 78.3 78.4
(4) Remove Inter Att 75.2 75.6
(5) Replace HW Pred. with FC 77.7 77.9
(6) Replace HW Enc. with FC 78.7 78.7
(7) Remove Sub Feat 77.9 78.3
(8) Remove Mul Feat 78.7 78.6
(9) Remove Concat Feat 77.9 77.6
(10) Add Bi-directional 78.3 78.4

3.4.4 Ablation Study

Table 3.3 reports ablation studies on the MultiNLI development sets (HW stands

for Highway). In (1), we replaced all FM functions with regular fully-connected

(FC) layers in order to observe the effect of FM versus FC. More specifically, We

experimented with several FC configurations as follows: (a) 1-layer linear, (b) 1-

layer ReLU and (c) 2-layer ReLU. The 1-layer linear setting performs the best and

is therefore reported in Table 3.3. Using ReLU seems to be worse than nonlinear

FC layers. Overall, the best combination (option (a)) still experienced a decline in

performance in both development sets.

In (2-3), we explored the utility of using character and syntactic embeddings, which

we found to have helped CAFE marginally. In (4), we removed the inter-attention

alignment features, which naturally impact the model performance significantly.

In (5-6), we explored the effectiveness of the highway layers (in prediction layers

and encoding layers) by replacing them to FC layers. We observe that both high-

way layers have marginally helped the overall performance. Finally, in (7-9), we

removed the alignment features based on their composition type. We observe that

the Sub and Concat compositions were more important than the Mul composition.

However, removing any of the three will result in some performance degradation.

Finally, in (10), we replaced the LSTM encoder with a BiLSTM, observing that

adding bi-directionality did not improve performance for our model.



Chapter 3 Factorized Neural Attention Models 46

Table 3.4: Linguistic Error Analysis on MultiNLI dataset.

Matched Mismatched
ESIM CAFE ESIM CAFE

Conditional 100 70 60 85
Word overlap 50 82 62 87
Negation 76 76 71 80
Antonym 67 82 58 80
Long Sentence 75 79 69 77
Tense Difference 73 82 79 89
Active/Passive 88 100 91 90
Paraphrase 89 88 84 95
Quantity/Time 33 53 54 62
Coreference 83 80 75 83
Quantifier 69 75 72 80
Modal 78 81 76 81
Belief 65 77 67 83

3.4.5 Linguistic Error Analysis

We perform a linguistic error analysis using the supplementary annotations pro-

vided by the MultiNLI dataset. We compare against the model outputs of the

ESIM model across 13 categories of linguistic phenenoma [87]. Table 3.4 reports

the result of our error analysis. We observe that our CAFE model generally out-

performs ESIM on most categories.

On the mismatched setting, CAFE outperforms ESIM in 12 out of 13 categories,

losing only in one percentage point in Active/Passive category. On the matched

setting, CAFE is outperformed by ESIM very marginally on coreference and para-

phrase categories. Despite generally achieving much superior results, we noticed

that CAFE performs poorly on the matched setting. However, this only accounts

for 5% of samples. Measuring the absolute ability of CAFE, we find that CAFE

performs extremely well in handling linguistic patterns of paraphrase detection and

active/passive. This is likely to be attributed by the alignment strategy that both

CAFE and ESIM exploit.

3.4.6 Interpreting and Visualizing with CAFE

Finally, we also observed that the propagated features are highly interpretable,

giving insights to the inner workings of the CAFE model. Figure 3.3 shows a visu-
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Figure 3.3: Visualization of six propagated features.

alization of the feature values from an example in the SNLI test set. The ground

truth is contradiction. Based on the above example, we make several observations.

Firstly, inter mul features mostly capture identical words (or semantically simi-

lar words), i.e., inter mul features for ‘river’ spikes in both sentences. Secondly,

inter sub spikes on conflicting words that might cause contradiction, e.g., ‘sedan’

and ‘land rover’ are not the same vehicle. Another interesting observation is that

we notice the inter sub features for driven and stuck spiking. This also validates

the observation of [76], which shows what the sub vector in the ESIM model is

looking out for contradictory information. However, our architecture allows the

inspection of these vectors since they are compressed via factorization, leading to
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larger extents of explainability - a quality that neural models inherently lack. We

also observe that intra-attention (e.g., intra cat) features seem to capture the more

important words in the sentence (i.e., ‘river’, ‘sedan’ and ‘land rover’ ).

3.5 Experiments (CSRAN)

3.5.1 Experimental Setup

In this section, we present extended experiments of CSRAN on SNLI and SciTail.

For the sake of completeness, we also run additional experiments on Quora NLI

dataset. Paraphrase detection problems are strongly related to Natural Language

Inference and can be considered to be a ‘child’ problem of the NLI family.

Quora Question NLI It is a well-studied paraphrase identification dataset3. We

use the splits provided by [149]. The task is to determine if two questions are para-

phrases of each other. This task is formulated as a binary classication problem. We

compare with L.D.C [103], BiMPM, the DecompAtt implementation by [158] (word

and char level) and DIIN. All baselines are reported from the respective papers.

All models are trained with the Adam optimizer [153] with learning rates tuned

amongst {0.001, 0.0003, 0.0004}. Batch size is tuned amongst {32, 64, 128, 256}.
The dimensions of the BiLSTM encoders are tuned amongst {64, 100, 200, 300}
and the number of hidden dimensions of the prediction layers is tuned amongst

{100, 200, 300, 600}. The number of stacked recurrent layers is tuned from [2, 5]

and the number of aggregation BiLSTM layers is tuned amongst {1, 2}. The num-

ber of prediction layers is tuned from [1,3]. Parameters are initialized using glorot

uniform [159]. All unspecified activation functions are ReLU activations. Word

embeddings are initialized with GloVe [16] and fixed during training. We imple-

ment our model in Tensorflow [152] and use the cuDNN implementation for all

BiLSTM layers.

3https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Table 3.5: Results (CSRAN) on single model SNLI dataset.

Model Acc
BiMPM [149] 87.5
ESIM [76] 88.0
DIIN [81] 88.0
DR-BiLSTM [160] 88.5
CAFE 88.5
CSRAN 88.7

Table 3.6: Results (CSRAN) on SciTail dataset.

Model Acc
DecompAtt [21] 72.3
ESIM [76] 70.6
DGEM [84] 77.3
CAFE 83.3
CSRAN 86.7

Table 3.7: Results (CSRAN) on Quora NLI dataset.

Model Acc
L.D.C [103] 87.5
Word DecompAtt [158] 87.5
BiMPM [149] 88.1
Char DecompAtt [158] 88.4
CAFE 88.5
DIIN [81] 89.0
CSRAN 89.2

3.5.2 Experimental Results

On SNLI (Table 3.5), CSRAN achieves the best single model performance on the

well-established dataset. This demonstrates the effectiveness of CSRAN, taking

into consideration of the inherent competitiveness of this well-known benchmark.

On SciTail (Table 3.6), CSRAN similarly achieves the best performance to date on

this dataset, outperforming the existing CAFE model by +3.4% absolute accuracy.

We validate that CSRAN can indeed improve the performance of CAFE.

On Quora NLI (Table 3.7), CSRAN also achieves the best single model score, out-

performing strong baselines such as BiMPM (+1.1%) and DIIN (+0.2%). Similarly,

CSRAN can further improve the performance of CAFE.
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3.6 Summary

In this chapter, we proposed a new neural architecture, CAFE for NLI. CAFE

achieves very competitive performance on three benchmark datasets. CAFE was

state-of-the-art on the well-contested SNLI leaderboard4 from December 2017 to

May 2018. Extensive ablation studies confirm the effectiveness of FM layers over

FC layers. Qualitatively, we show how different compositional operators (e.g., sub

and mul) behave in NLI task and shed light on why subtractive composition helps

in other models such as ESIM. Additionally, we proposed an extension of CAFE,

i.e., the CSRAN model. CSRAN uses co-stacking for improved gradient flow and

CAFE blocks between stacked recurrent encoders. Overall, both models helped

push and advance the state-of-the-art in NLI research.

4https://nlp.stanford.edu/projects/snli/

https://nlp.stanford.edu/projects/snli/


Chapter 4

Multi-Cast Attention Networks

for Retrieval-based Natural

Language Understanding

Modeling textual relevance between document query pairs lives at the heart of

IR-based NLU research. Intuitively, this enables a wide assortment of real life

applications, ranging from standard web search to automated chatbots. In this

chapter1, we discuss our proposed Multi-Cast Attention Networks for retrieval-

based NLU.

4.1 Introduction

The key idea of retrieval-based NLU systems is to learn a scoring function be-

tween document-query pairs, providing a ranked list of candidates as an output. A

considerable fraction of such IR systems are focused on short textual documents,

e.g., answering facts based questions or selecting the best response in the context

of a chat-based system. The application of retrieval-based response and question

answering (QA) systems is overall versatile, potentially serving as a powerful stan-

dalone domain-specific system or a crucial component in larger, general purpose

chat systems such as Alexa. This chapter presents a universal neural ranking model

for such tasks.

1This chapter is published as Multi-Cast Attention Networks, Proceedings of KDD 2018 [61]

51
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Neural networks (or deep learning) have garnered considerable attention for retrieval-

based systems [30, 50, 161–163]. Notably, the dominant state-of-the-art systems

for many benchmarks are now neural models, almost completely dispensing with

traditional feature engineering techniques altogether. In these systems, convolu-

tional or recurrent networks are empowered with recent techniques such as neural

attention [22, 23, 161], achieving very competitive results on standard benchmarks.

The key idea of attention is to extract only the most relevant information that is

useful for prediction. In the context of textual data, attention learns to weight

words and sub-phrases within documents based on how important they are. In

the same vein, co-attention mechanisms [94, 100, 101, 111] are a form of attention

mechanisms that learn joint pairwise attentions, with respect to both document

and query.

Typically, attention is applied once to a sentence [22, 161]. A final representation is

learned, and then passed to prediction layers. In the context of handling sequence

pairs, co-attention is applied and a final representation for each sentence is learned

[94, 100, 101]. An obvious drawback which applies to many existing models is that

they are generally restricted to one attention variant. In the case where one or more

attention calls are used (e.g., co-attention and intra-attention, etc.), concatenation

is generally used to fuse representations [21, 94]. Unfortunately, this incurs cost in

subsequent layers by doubling the representation size per call.

The rationale for desiring more than one attention call is intuitive. In [21, 94],

Co-Attention and Intra-Attention are both used because each provides a different

view of the document pair, learning high quality representations that could be

used for prediction. Hence, this can significantly improve performance. Moreover,

Co-Attention also comes in different flavors and can either be used with extractive

max-mean pooling [100, 101] or alignment-based pooling [21, 76, 94]. Each co-

attention type produces different document representations. In max-pooling, sig-

nals are extracted based on a word’s largest contribution to the other text sequence.

Mean-pooling calculates its contribution to the overall sentence. Alignment-pooling

is another flavor of co-attention, which aligns semantically similar sub-phrases to-

gether. As such, different pooling operators provide a different view of sentence

pairs. This is often tuned as a hyperparameter, i.e., performing architectural en-

gineering to find the best variation that works best on each problem domain and

dataset.
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Our approach is targeted at serving two important purposes: (1) It removes the

need for architectural engineering of this component by enabling attention to be

called for an arbitrary k times with hardly any consequence and (2) concurrently it

improves performance by modeling multiple views via multiple attention calls. As

such, our method is in a similar spirit to multi-headed attention, albeit efficient. To

this end, we propose Multi-Cast Attention Networks (MCAN), a new deep learning

architecture for a potpourri of tasks in the question answering and conversation

modeling domains. In our approach, attention is casted, in contrast to the most

other works that use it as a pooling operation. We cast co-attention multiple times,

each time returning a compressed scalar feature that is re-attached to the original

word representations. The key intuition is that compression enables scalable casting

of multiple attention calls, aiming to provide subsequent layers with a hint of not

only global knowledge but also cross sentence knowledge. Intuitively, when passing

these enhanced embeddings into a compositional encoder (such as a long short-

term memory encoder), the LSTM can then benefit from this hint and alter its

representation learning process accordingly.

In summary, the prime contributions of this work are:

• For the first time, we propose a new paradigm of utilizing attentions not

as a pooling operator but as a form of feature augmentation. We propose

an overall architecture, Multi-Cast Attention Networks (MCAN) for generic

sequence pair modeling.

• We evaluate our proposed model on four benchmark tasks, i.e., Dialogue

Reply Prediction (Ubuntu dialogue corpus), Factoid Question Answering

(TrecQA), Community Question Answering (QatarLiving forums from Se-

mEval 2016) and Tweet Reply Prediction (customer support). On Ubuntu

dialogue corpus, MCAN outperforms the existing state-of-the-art models by

9%. MCAN also achieves the best performing score of 0.838 MAP and 0.904

MRR on the well-studied TrecQA dataset.

• We provide a comprehensive and in-depth analysis of the inner workings of

our proposed MCAN model. We show that the casted attention features are

interpretable and are capable of learning (1) a neural adaptation of word

overlap and (2) a differentiation of evidence and anti-evidence words/pat-

terns.
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Figure 4.1: Architecture of Multi-Cast Attention Networks.

4.2 Proposed Method

In this section, we describe our proposed MCAN model. The inputs to our model

are two text sequences which we denote as query q and document d. In our prob-

lem, query-document can be generalizable to different problem domains such as

question-answering or message-response prediction. Figure 4.1 illustrates the over-

all model architecture for question-answer retrieval. MCAN is a wide multi-headed

attention architecture that utilizes compression functions and attention as features.

The given example is for question-answer retrieval. Note that the Input Encoding

layer is omitted for clarity.

4.2.1 Input Encoder

The document and query inputs are passed in as one-hot encoded vectors. A word

embedding layer parameterized by We ∈ Rd×|V | converts each word to a dense word
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representation w ∈ Rd. V is the set of all words in the vocabulary.

Highway Encoder Each word embedding is passed through a highway encoder

layer. Highway networks [146] are gated nonlinear transform layers which control

information flow to subsequent layers. Many works adopt a projection layer that is

trained in place of the raw word embeddings. Not only does this save computation

cost but also reduces the number of trainable parameters. Our work extends this

projection layer to use a highway encoder. The intuition for doing so is simple,

i.e., highway encoders can be interpreted as data-driven word filters. As such,

we can imagine them to parametrically learn which words have an inclination to

be important and not important to the task at hand, for example, filtering stop

words and words that usually do not contribute much to the prediction. Similar

to recurrent models that are gated in nature, this highway encoder layer controls

how much information (of each word) is flowed to the subsequent layers.

Let H(.) and T (.) be single layered affine transforms with ReLU and sigmoid

activation functions respectively. A single highway network layer is defined as:

y = H(x,WH) ·T (x,WT ) + (1− T (x,WT )) ·x (4.1)

where WH ,WT ∈ Rr×d. Notably, the dimensions of the affine transform might be

different from the size of the input vector. In this case, an additional nonlinear

transform is used to project x to the same dimensionality.

4.2.2 Co-Attention

Co-Attention [111] is a pairwise attention mechanism that enables attending to text

sequence pairs jointly. In this section, we introduce four variants of attention, i.e.,

(1) max-pooling, (2) mean-pooling, (3) alignment-pooling, and finally (4) intra-

attention (or self-attention). The first step in co-attention is to learn an affinity

(or similarity) matrix between each word across both sequences. Following Parikh

et al. [21], we adopt the following formulation for learning the affinity matrix.

sij = F (qi)
TF (dj) (4.2)
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where F (.) is a function such as a multi-layered perceptron (MLP). Alternate forms

of co-attention are also possible such as sij = q>i Mdj and sij = F ([qi; dj]).

Extractive Pooling The most common variant of extractive co-attention is the

max-pooling co-attention, which attends to each word based on its maximum in-

fluence it has on the other text sequence.

q′ = Soft(max
col

(s))>q and d′ = Soft(max
row

(s))>d (4.3)

where q′, d′ are the co-attentive representations of q and d respectively. Soft(.) is

the Softmax operator. Alternatively, the mean row and column-wise pooling of

matrix s can be also used:

q′ = Soft(mean
col

(s))>q and d′ = Soft(mean
row

(s))>d (4.4)

However, each pooling operator has different impacts and can be intuitively under-

stood as follows: max-pooling selects each word based on its maximum importance

of all words in the other text. Mean-pooling is a more wholesome comparison,

paying attention to a word based on its overall influence on the other text. This

is usually dataset-dependent, regarded as a hyperparameter and is tuned to see

which performs best on the held out set.

Alignment-Pooling Soft alignment-based pooling has also been utilized for

learning co-attentive representations [21]. However, the key difference with soft

alignment is that it realigns sequence pairs while standard co-attention simply

learns to weight and score important words. The co-attentive representations are

then learned as follows:

d′i :=

`q∑
j=1

exp(sij)∑`q
k=1 exp(sik)

qj and q′j :=

`d∑
i=1

exp(sij)∑`d
k=1 exp(skj)

di (4.5)

where d′i is the sub-phrase in q that is softly aligned to di. Intuitively, d′i is a

weighted sum across {qj}`qj=1, selecting the most relevant parts of q to represent di.
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Intra-Attention Intra-Attention, or Self-Attention was recently proposed to

learn representations that are aware of long-term dependencies. This is often for-

mulated as a co-attention (or alignment) operation with respect to itself. In this

case, we apply intra-attention to both document and query independently. For no-

tational simplicity, we refer to them as x instead of q or d here. The Intra-Attention

function is defined as:

x′i :=
∑̀
j=1

exp(sij)∑`
k=1 exp(sik)

xj (4.6)

where x′i is the intra-attentional representation of xj.

4.2.3 Multi-Cast Attention

At this point, it is easy to make several observations. Firstly, each attention mech-

anism provides a different flavor to the model. Secondly, attention is used to alter

the original representation either by re-weighting or realigning. As such, most neu-

ral architectures only make use of one type of co-attention or alignment function

[21, 100]. However, this requires the right model architecture to be tuned and

potentially missing out from the benefits brought by using multiple variations of

co-attention mechanism. As such, our work casts each attention operation as a

word-level feature.

Casted Attention Let x be either q or d and x̄ is the representation2 of x after

applying co-attention or soft attention alignment. The attention features for the

co-attention operators are:

fc = Fc([x̄;x]) (4.7)

fm = Fc(x̄� x) (4.8)

fs = Fc(x̄− x) (4.9)

where � is the Hadamard product and [.; .] is the concatenation operator. Fc(.)

is a compression function used to reduce features to a scalar. Intuitively, what is

achieved here is that we are modeling the influence of co-attention by comparing

2We omit subscripts for clarity.
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representations before and after co-attention. For soft-attention alignment, a criti-

cal note here is that x and x̄ (though of equal lengths) have ‘exchanged’ semantics.

In other words, in the case of q, q̄ actually contains the aligned representation of

d. Finally, the usage of multiple comparison operators (subtractive, concatenation

and multiplicative operators) is to capture multiple perspectives and is inspired by

the ESIM model [76].

Compression Function This section defines the compression function Fc(.) to

be used. The rationale for compression is simple and intuitive - we do not want to

bloat subsequent layers with a high dimensional vector which consequently incurs

parameter costs in subsequent layers. We investigate the usage of three compression

functions, which are capable of reducing a n-dimensional vector to a scalar.

• Sum (SM) Function is a non-parameterized function that sums the entire

vector, returning a scalar as an output.

F (x) =
n∑
i

xi , ∀xi ∈ x (4.10)

• Neural Network (NN) is a fully-connected layer that converts each n-

dimensional feature vector as follows:

F (x) = ReLU(Wc(x) + bc). (4.11)

where Wc × Rn×1 and bc ∈ R are the parameters of the FC layer.

• Factorization Machines (FM) are general purpose machine learning tech-

niques that accept a real-valued feature vector x ∈ Rn and return a scalar

output.

F (x) = w0 +
n∑
i=1

wi xi +
n∑
i=1

n∑
j=i+1

〈vi, vj〉 xi xj (4.12)

where w0 ∈ R , wi ∈ Rn and {v1, · · · vn} ∈ Rn×k are the parameters of the

FM model. FMs are expressive models that capture pairwise interactions

between features using factorized parameters. k is the number of factors of

the FM model. For more details, we refer interested readers to [144].
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Note that we do not share parameters across multiple attention casts because each

attention cast is aimed at modeling a different view. Our experiments report the

above mentioned variants under the model name MCAN (SM), MCAN (NN) and

MCAN (FM) respectively.

4.2.4 Multi-Cast

The key idea behind our architecture is the facilitation of k attention calls (or

casts), with each cast augmenting raw word embeddings with a real-valued at-

tentional hint. We formally describe the Multi-Cast Attention mechanism. For

each query-document pair, we apply (1) Co-Attention with mean-pooling, (2) Co-

Attention with max-pooling and (3) Co-Attention with alignment-pooling. Addi-

tionally, we apply Intra-Attention to both query and document individually. Each

attention cast produces three scalars (per word) which are concatenated with the

word embedding. The final casted feature vector is z ∈ R12. As such, for each

word wi, the new word representation becomes w̄i = [wi; zi].

4.2.5 LSTM Encoder

Next, the word representations with casted attention w̄1, w̄2, . . . w̄` are then passed

into a sequential encoder layer. We adopt a standard vanilla long short-term mem-

ory (LSTM) encoder:

hi = LSTM(u, i),∀i ∈ [1, . . . `] (4.13)

where ` represents the maximum length of the sequence. Notably, the parameters of

the LSTM are ‘siamese’ in nature, sharing weights between document and query.

The key idea is that the LSTM encoder learns representations that are aware

of sequential dependencies by the usage of nonlinear transformations as gating

functions. Since LSTMs are standard neural building blocks, we omit technical

details in favor of brevity. As such, the key idea behind casting attention as features

right before this layer is that it provides the LSTM encoder with hints that provide

information such as (1) long-term and global sentence knowledge and (2) knowledge

between sentence pairs (document and query).
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4.2.6 Pooling Operation

Finally, a pooling function is applied across the hidden states {h1 . . . h`} of each

sentence, converting the sequence into a fixed dimensional representation.

h = MeanMax[h1 . . . h`] (4.14)

We adopt the MeanMax pooling operator, which concatenates the result of the

mean pooling and max pooling together. We found this to consistently perform

better than using max or mean pooling in isolation.

4.2.7 Prediction Layer and Optimization

Finally, given a fixed dimensional representation of the document-query pair, we

pass their concatenation into a two-layer h-dimensional highway network. The final

prediction layer of our model is computed as follows:

yout = H2(H1([xq;xd;xq � xd;xq − xd])) (4.15)

where H1(.), H2(.) are highway network layers with ReLU activation. The output

is then passed into a final linear softmax layer.

ypred = softmax(WF · yout + bF ) (4.16)

where WF ∈ Rh×2 and bF ∈ R2. The network is then trained using standard

multi-class cross entropy loss with L2 regularization.

J(θ) = −
N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] + λ||θ||L2 (4.17)

where θ are the parameters of the network. ŷ is the output of the network. ||θ||L2

is the L2 regularization and λ is the weight of the regularizer.
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4.2.8 Relation to CAFE

Without the max and mean pooling attention layers, MCAN reduces to the CAFE

model. However, the max and mean pooling are characteristic of many IR-based

NLU tasks. Therefore, they are critical to the overall MCAN framework. Moreover,

MCAN demonstrates the potential of ‘multi-casting’ and is essentially a multi-

casted variation of CAFE introduced in Chapter 3. This chapter also showcases

the effectiveness of a CAFE-like architecture on a suite of IR-based NLU tasks.

MCAN equips with extractive pooling layers, which makes it critical for IR-based

NLU.

4.3 Experiments

This section describes and reports our experimental results. The experiments are

conducted based on four retrieval-based NLU tasks, i.e., Dialogue Prediction, Fac-

toid Question Answering, Community Question Answering and Tweet Reply Pre-

diction.

4.3.1 Dialogue Prediction

In this first task, we evaluate our model on its ability to successfully predict the

next reply in conversations.

Dataset and Evaluation Metric For this experiment, we utilize the large and

well-known large-scale Ubuntu Dialogue Corpus (UDC) [56]. We use the same

testing splits provided by Xu et al. [164]. In this task, the goal is to match

a sentence with its reply. Following [55], the task mainly utilizes the last two

utterances in each conversation, predicting if the latter follows the former. The

training set consists of one million message-response pairs with a 1 : 1 positive-

negative ratio. The development and testing sets have a 9 : 1 ratio. Following

[55, 164], we use the evaluation metric of recall@k (Rn@K) which indicates whether

the ground truth exists in the top k results from n candidates. The four evaluation

metrics used are R2@1, R10@1, R10@2 and R10@5.
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Table 4.1: Results on Ubuntu Dialogue Corpus.

R2@1 R10@1 R10@2 R10@5
MLP 0.651 0.256 0.380 0.703
DeepMatch 0.593 0.345 0.376 0.693
ARC-I 0.665 0.221 0.360 0.684
ARC-II 0.736 0.380 0.534 0.777
CNTN 0.743 0.349 0.512 0.797
MatchPyramid 0.743 0.420 0.554 0.786
LSTM 0.725 0.361 0.494 0.801
AP-LSTM 0.758 0.381 0.545 0.801
MV-LSTM 0.767 0.410 0.565 0.800
KEHNN 0.786 0.460 0.591 0.819
MCAN (SM) 0.831 0.548 0.682 0.873
MCAN (NN) 0.833 0.549 0.686 0.875
MCAN (FM) 0.834 0.551 0.684 0.875

Implementation Details We compare against a large number of competitive

baselines, e.g., MLP, DeepMatch [165], ARC-I / ARC-II [90], CNTN [95], Match-

Pyramid [97], vanilla LSTM, Attentive Pooling LSTM [100], MV-LSTM [96] and

finally the state-of-the-art Knowledge Enhanced Hybrid Neural Network (KEHNN)

[55]. A detailed description of baselines can be found at [55]. Since testing splits

are the same, we report the results directly from [55]. For fair comparison, we set

the LSTM encoder size in MCAN to d = 100 which makes it equal to the models

in [55]. We optimize MCAN with Adam optimizer [153] with an initial learning

rate of 3 × 10−4. A dropout rate of 0.2 is applied to all layers except the word

embedding layer. The sequences are dynamically truncated or padded to their

batch-wise maximums (with a hard limit of 50 tokens). We initialize the word

embedding layer with pretrained GloVe embeddings.

Results Table 4.1 reports the results of our experiments. Clearly, we observe

that all MCAN models achieve a huge performance gain over existing state-of-the-

art models. More specifically, the improvement across all metrics are ≈ 5% − 9%

better than KEHNN. The performance improvement over strong baselines such

as AP-LSTM and MV-LSTM are even greater, hitting an improvement of 15% in

terms of R10@1. This ascertains the effectiveness of the MCAN model. Overall,

MCAN (FM) and MCAN (NN) are comparable in terms of performance. MCAN

(SM) is marginally lower than both MCAN (FM) and MCAN (NN). However, its

performance is still considerably higher than the existing state-of-the-art models.
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4.3.2 Factoid Question Answering

Factoid question answering is the task of answering factual based questions. In

this task, the goal is to provide a ranked list of answers to a given question.

Dataset and Evaluation Metric We utilize the QA dataset from TREC (Text

Retrieval Conference). TrecQA is one of the most widely evaluated datasets, com-

petitive and long standing benchmark for QA. This dataset was prepared by Wang

et al. [166] and contains 53K QA pairs for training and 1100/1500 pairs for de-

velopment and testing respectively. Following the recent works, we evaluate on

the clean setting as noted by [167]. The evaluation metrics for this task are the

MAP (mean average precision) and MRR (mean reciprocal rank) scores which are

well-known IR metrics.

Implementation Details We compare against all previously published works on

this dataset. The competitive baselines for this task are QA-LSTM/AP-CNN [100],

LDC model [103], MPCNN [98], MPCNN+NCE [167], HyperQA [106], BiMPM [80]

and IWAN [94]. For our model, the size of the LSTM used is 300. The dimensions

of the highway prediction layer is 200. We use the Adam optimizer with a 3×10−4

learning rate. The L2 regularization is set to 10−6. A dropout rate of 0.2 is

applied to all layers except the embedding layer. We use pretrained 300d GloVe

embeddings and fix the embeddings during training. For MCAN (FM), we use a

FM model with 10 factors. We pad all sequences to the maximum sequence length

and truncate them to the batch-wise maximums.

Results Table 4.2 reports our results on TrecQA. All MCAN variations outper-

form all existing state-of-the-art models. Notably, MCAN (FM) is currently the

best performing model on this extensively studied dataset. MCAN (NN) comes

in second which marginally outperforms the highly competitive and recent IWAN

model. Finally, MCAN (SM) remains competitive to IWAN, despite naively sum-

ming over casted attention features.
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Table 4.2: Results on TrecQA (clean) dataset.

Model MAP MRR
QA-LSTM (dos Santos et al.) 0.728 0.832
AP-CNN (dos Santos et al.) 0.753 0.851
LDC Model (Wang et al.) 0.771 0.845
MPCNN (He et al.) 0.777 0.836
HyperQA (Tay et al.) 0.784 0.865
MPCNN + NCE (Rao et al.) 0.801 0.877
BiMPM (Wang et al.) 0.802 0.899
IWAN (Shen et al.) 0.822 0.889
MCAN (SM) 0.827 0.880
MCAN (NN) 0.827 0.890
MCAN (FM) 0.838 0.904

4.3.3 Community Question Answering (cQA)

This task is concerned with ranking answers in community forums. Different from

factoid QA, answers are generally subjective instead of factual. Moreover, answer

lengths are also much longer.

Dataset and Evaluation We use the QatarLiving dataset, a well-studied bench-

mark dataset from SemEval-2016 Task 3 Subtask A (cQA) and has been used ex-

tensively as a benchmark for recent state-of-the-art neural network models for cQA

[101, 104]. This is a real-world dataset obtained from Qatar Living Forums and

comprises 36K training pairs, 2.4K development pairs and 3.6K testing pairs. In

this dataset, there are ten answers in each question ‘thread’ which are marked as

‘Good‘, ‘Potentially Useful’ or ‘’Bad’. Following [101], ‘Good’ is regarded as posi-

tive and anything else is regarded as negative labels. We evaluate on two metrics,

namely the Precision@1 (P@1) and Mean Average Precision (MAP) metric.

Implementation Details The key competitors of this dataset are the CNN-

based ARC-I/II architecture by Hu et al. [90], the Attentive Pooling CNN [100],

Kelp [168] a feature engineering based SVM method, ConvKN [169] a combination

of convolutional tree kernels with CNN and finally AI-CNN (Attentive Interactive

CNN) [101], a tensor-based attentive pooling neural model. We also compare with

the Cross Temporal Recurrent Networks (CTRN) [104], a recently proposed model

for ranking QA pairs which has achieved very competitive performance on this
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Table 4.3: Results on QatarLiving dataset.

Model P@1 MAP
ARC-I (Hu et al.) 0.741 0.771
ARC-II (Hu et al.) 0.753 0.780
AP-CNN (dos Santos et al.) 0.755 0.771
Kelp (Filice et al.) 0.751 0.792
ConvKN (Barron Cedeno et al.) 0.755 0.777
AI-CNN (Zhang et al.) 0.763 0.792
CTRN (Tay et al.) 0.788 0.794
MCAN (SM) 0.803 0.787
MCAN (NN) 0.802 0.784
MCAN (FM) 0.804 0.803

dataset. Following [104], we initialize MCAN with domain-specific 200 dimensional

word embeddings using the unannotated QatarLiving corpus. Word embeddings

are not updated during training. The size of the highway projection layer, LSTM

encoder and highway prediction layer are all set to 200. The model is optimized

with Adam optimizer with learning rate of 3× 10−4.

Results Table 4.3 reports the performance comparison on the QatarLiving dataset.

Our best performing MCAN model achieves state-of-the-art performance on this

dataset. Performance improvement over recent, competitive neural network base-

lines is significant. Notably, the improvement of MCAN (FM) over AI-CNN on

the P@1 metric is 4.1% and 1.1% in terms of MAP. MCAN (FM) also achieves

competitive results relative to the CTRN model. The performance of MCAN (NN)

and MCAN (SM) is lower than MCAN (FM) but still remains competitive on this

benchmark.

4.3.4 Tweet Reply Prediction

This experiment is concerned with predicting an appropriate reply given a tweet.

Dataset and Evaluation Metrics We utilize a customer support dataset ob-

tained from Kaggle3. This dataset contains tweet-response pairs of tweets to fa-

mous brands and their replies. For each Tweet-Reply pair, we randomly select four

3https://www.kaggle.com/soaxelbrooke/customer-support-on-twitter

https://www.kaggle.com/soaxelbrooke/customer-support-on-twitter


Chapter 4 Multi-Cast Attention Networks 66

Table 4.4: Results on Tweets dataset.

Model MRR P@1
CBOW + MLP 0.658 0.442
LSTM 0.652 0.431
CNN 0.657 0.441
AP-CNN (dos Santos et al.) 0.643 0.426
AI-CNN (Zhang et al.) 0.675 0.465
AP-BiLSTM (dos Santos et al.) 0.725 0.540
MCAN (SM) 0.722 0.548
MCAN (NN) 0.747 0.585
MCAN (FM) 0.759 0.593

tweets as negative samples that originate from the same brand. The dataset is split

into 8:1:1 train-dev-test split. The evaluation metrics for this task are MRR (Mean

reciprocal rank) and Precision@1 (accuracy). Unlike previous datasets, there are

no published works on this dataset. As such, we implement the baselines ourselves.

We implement standard baselines such as (1) CBOW (sum embeddings) passed into

a 2 layer MLP with ReLU activations, (2) standard vanilla LSTM and CNN models

and (3) BiLSTM and CNN with standard Co-Attention (AP-BiLSTM, AP-CNN)

following [100]. All models minimize the binary cross entropy loss (pointwise) since

we found performance to be much better than using ranking loss. We also include

the recent AI-CNN (Attentive Interactive CNN) which uses multi-dimensional co-

attention. We set all LSTM dimensions to d = 100 and the number of CNN filters

is 100. The CNN filter width is set to 3. We train all models with Adam opti-

mizer with 3 × 10−4 learning rate. Word embeddings are initialized with GloVe

and fixed during training. A dropout of 0.2 is applied to all layers except the word

embedding layer.

Results Table 4.4 reports our results on the Tweets dataset. MCAN (FM)

achieves the top performance by a significant margin. The performance of MCAN

(NN) falls short of MCAN (FM), but is still highly competitive. Our best MCAN

model outperforms AP-BiLSTM by 3.4% in terms of MRR and 5.3% in terms of

P@1. The performance improvement of AI-CNN is even greater, i.e., 8.4% in terms

of MRR and 12.5% in terms of P@1. The strongest baseline is AP-BiLSTM which

significantly outperforms AI-CNN and AP-CNN.
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Table 4.5: Ablation analysis (validation set) on TrecQA dataset.

Setting MAP MRR
Original 0.866 0.922
(1) Remove Highway 0.825 0.863
(2) Remove LSTM 0.765 0.809
(3) Remove MCA 0.670 0.749
(4) Remove Intra 0.834 0.910
(5) Remove Align 0.682 0.726
(6) Remove Mean 0.858 0.906
(7) Remove Max 0.862 0.915

4.3.5 Ablation Analysis

This section aims to demonstrate the relative effectiveness of different components

of our proposed MCAN model. Table 4.5 reports the results on the validation set

of the TrecQA dataset. We report the scores of seven different configurations. In

(1), we replaced all highway layers with regular feed-forward neural networks. In

(2), we removed the LSTM encoder before the prediction layer. In (3), we removed

the entire multi-cast attention mechanism. This is equivalent to removing the

twelve attention features. In (4-7), we removed different attention casts, aiming to

showcase that removing either one results in some performance drop.

From our ablation analysis, we can easily observe the crucial components to our

model. Firstly, we observe that removing MCA entirely significantly decreases

the performance (ablation (3)). In this case, validation MAP drops from 0.866 to

0.670. As such, our casted attention features contribute a lot to the performance

of the model. Secondly, we also observe that the LSTM encoder is necessary.

This is intuitive because the goal of MCAN is to provide features as hints for a

compositional encoder. As such, removing the LSTM encoder allows our atten-

tion hints to go unused. While the upper prediction might still manage to learn

from these features, it is still sub-optimal compared to using an LSTM encoder.

Thirdly, we observe that removing Max or Mean Co-Attention decreases perfor-

mance marginally. However, removing the Alignment Co-Attention decreases the

performance significantly. As such, it is clear that the alignment-based attention is

most important for our model. However, Max, Mean and Intra attention all con-

tribute to the performance of MCAN. Hence, using multiple attention casts can

improve performance. Finally, we also note that the highway layers also contribute

slightly to performance.
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(a) Features f1, f2, f3 for question.

(b) Features f1, f2, f3 for answer.

Figure 4.2: Casted Attention Features on a positive sample.

4.3.6 In-depth Model Analysis

In this section, we aim to provide insights pertaining to the inner workings of our

model. More specifically, we list several observations by visual inspection of the

casted attention features. We trained a MCAN model with FM compression and

extracted the word-level casted attention features. The features are referred to as

fi where i ∈ [1, 12]. f1, f2, f3 are generated from alignment-pooling. f4, f5, f6 and

f7, f8, f9 are generated from max and mean pooled co-attention respectively.

Observation 1: Features learn a Neural Adaptation of Word Overlap

Figure 4.2 and Figure 4.3 show a positive and negative QA pair from the TrecQA

test set. Firstly, we analyze4 the first three features f1, f2 andf3. These features

4This is done primarily for clear visualization, lest the diagram becomes too cluttered.
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(a) Features f1, f2, f3 for question.

(b) Features f1, f2, f3 for answer.

Figure 4.3: Casted Attention Features on a negative sample.

correspond to the alignment attention and multiply, subtract and concat compo-

sition respectively. From the figures, we observe that f1 spikes (in the negative

direction) when there is a word overlap across sentences, e.g., ‘teapot ’ in Figure

4.3 and ‘teapot dome scandal’ in Figure 4.2. Hence, f1 (dark blue line) behaves

as a neural adaptation of the conventional overlap feature. Moreover, in contrary

to traditional binary overlap features, we also notice that the value of the neural

word overlap feature is dependent on the word itself, i.e., ‘teapot ’ and ‘dome’ have

different values. As such, it encodes more information over the traditional binary

feature.

Observation 2: Features React to Evidence and Anti-Evidence While f1

is primarily aimed at modeling overlap, we observe that f3 tries to gather support-

ing evidence for the given QA pair. In Figure 4.2, the words ‘year’ and ‘1923’ have
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spiked. It also tries to extract key verbs such as ‘take place’ (question) and ‘began’

(answer) which are related verbs generally used to describe events. Finally, we

observe that f2 (subtractive composition) seems to be searching for anti-evidence,

i.e., a contradictory or irrelevant information. However, this appears to be more

subtle as compared to f1 and f3. In Figure 4.3, we note that the words ‘died’

and ‘attack’ (answer) have spiked. We find this example particularly interesting

because the correct answer ‘1923 ’ is in fact found in the answer. However, the

pair is wrong because the text sample refers to the ‘death of Harding ’ and does

not answer the question correctly. In the negative answer, we found that the word

‘died’ has the highest f2 value. As such, we believe that f2 is actively finding anti-

evidence to why this QA pair should be negative. Additionally, irrelevant words

such as ‘attack‘ and ‘god’ experience nudges by f2. Finally, it is good to note that

MCAN classifies these two samples correctly while a standard Bidirectional LSTM

does not.

Observation 3: Diversity of Multiple Casts One of the key motivators for a

multi-casted attention is that each attention cast produces features from different

views of the sentence pair. While we have shown in our ablation study that all

attention casts contributed to the overall performance, this section qualitatively an-

alyzes the output features. Figure 4.4 shows the casted attention features (answer

text) for max-pooled attention (f4, f5, f6) and mean-pooled attention (f7, f8, f9).

Note that the values on f7 are not constant. They appear to be since the max-min

range is much smaller than f8 and f9. Also, the corresponding question is the same

as Figure 4.2 and Figure 4.3 which allows a direct comparison with the alignment-

based attention. We observe that both attention casts produce extremely diverse

features. More specifically, not only the spikes are all at different words but the

overall sequential pattern is very different. We also note that the feature patterns

differ a lot from alignment-based attention (Figure 4.2). While we were aiming to

capture more diverse patterns, we also acknowledge that these features are much

less interpretable than f1, f2 and f3. Even so, some patterns can still be interpreted,

e.g., the value of f5 is high for important words and low (negative) whenever the

words are generic and unimportant such as ‘to’, ‘the’, ‘a’. Nevertheless, the main

objective here is to ensure that these features are not learning identical patterns.
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(a) Features generated from max -pool Co-Attention.

(b) Features generated from mean-pool Co-Attention.

Figure 4.4: Differences between Max and Mean-pooled Casted Attention.

4.4 Summary

We proposed a new state-of-the-art neural model for a myriad of retrieval and

matching tasks in the domain of question answering and conversation modeling.

Our proposed model is based on a re-imagination of the standard and widely ap-

plied neural attention. For the first time, we utilize attention not as a pooling

operator but as a form of feature augmentation. We propose three methods to

compress attentional matrices into scalar features. Via visualization and qualita-

tive analysis, we show that these casted features can be interpreted and understood.

Our proposed model achieves highly competitive results on four benchmark tasks

and datasets. The achievements of our proposed model are as follows: (1) Our

model obtains the highest performing result on the well-studied TrecQA dataset,

(2) our model achieves 9% improvement on Ubuntu dialogue corpus relative to
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the best existing model, and (3) our model achieves strong results on Community

Question Answering and Tweet Reply Prediction.



Chapter 5

Densely Connected Attention

Propagation for Machine Reading

Comprehension

Machine Reading comprehension (MRC) is one of the core natural language un-

derstanding (NLU) tasks. Different from natural language inference, this task

evaluates a model’s capability to answer questions, which implicitly tests for un-

derstanding and reasoning capabilities. This chapter studies NLU from the per-

spective of MRC systems. To this end, we propose a new state-of-the-art system for

question answering and reading comprehension. This chapter1 discusses our pro-

posed Densely Connected Attention Propagation (DecaProp) model for machine

reading comprehension.

5.1 Introduction

The dominant neural architectures for machine reading comprehension (MRC) typ-

ically follow a standard ‘encode-interact-point’ design [34, 110, 111, 113, 117]. Fol-

lowing the embedding layer, a compositional encoder typically encodes Q (query)

and P (passage) individually. Subsequently, an (bidirectional) attention layer is

1This chapter is published as Densely Connected Attention Propagation for Reading Compre-
hension, Proceedings of NeurIPS 2018 [62]

73
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then used to model interactions between P/Q. Finally, these attended represen-

tations are then reasoned over to find (point to) the best answer span. While

there might be slight variants of this architecture, this overall architectural design

remains consistent across many MRC models.

Intuitively, the design of MRC models often possesses some depth, i.e., every stage

of the network easily comprises several layers. For example, the R-NET [113]

architecture adopts three BiRNN layers as the encoder and two additional BiRNN

layers at the interaction layer. BiDAF [110] uses two BiLSTM layers at the pointer

layer, etc. As such, MRC models are often relatively deep, at the very least within

the context of NLP.

Unfortunately, the depth of a model is not without implications. It is well-established

fact that increasing the depth may impair gradient flow and feature propagation,

making networks harder to train [146, 170, 171]. This problem is prevalent in com-

puter vision, where mitigation strategies that rely on shortcut connections such

as Residual networks [170], GoogLeNet [172] and DenseNets [171] were incepted.

Naturally, many of the existing MRC models already have some built-in designs

to workaround this issue by shortening the signal path in the network. Examples

include attention flow [110], residual connections [112, 118] or simply the usage of

highway encoders [146]. As such, we hypothesize that explicitly improving infor-

mation flow can lead to further and considerable improvements in MRC models.

Another observation is that the flow of P/Q representations across the network are

often well-aligned and ‘synchronous’, i.e., P is often only matched with Q at the

same hierarchical stage (e.g., only after they have passed through a fixed number

of encoder layers). To this end, we hypothesize that increasing the number of

interaction interfaces, i.e., matching in an asynchronous, cross-hierarchical fashion,

can also lead to an improvement in performance.

Based on the above mentioned intuitions, this chapter proposes a new architecture

with two distinct characteristics. Firstly, the proposed network is densely con-

nected, connecting every layer of P with every layer of Q. This not only facilitates

information flow but also increases the number of interaction interfaces between

P/Q. Secondly, our network is densely connected by attention, making it vastly

different from any residual mitigation strategy in the literature. To the best of our
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knowledge, this is the first work that explicitly considers attention as a form of

skip-connector.

Notably, models such as BiDAF incorporates a form of attention propagation

(flow). However, this is inherently unsuitable for forging dense connections through-

out the network since this would incur a massive increase in the representation size

in subsequent layers. To this end, we propose efficient Bidirectional Attention

Connectors (BAC) as a base building block to connect two sequences at arbitrary

layers. The key idea is to compress the attention outputs so that they can be

small enough to propagate, yet enabling a connection between two sequences. The

propagated features are collectively passed into prediction layers, which effectively

connect shallow layers to deeper layers. Therefore, this enables multiple bidirec-

tional attention calls to be executed without much concern, allowing us to efficiently

connect multiple layers together.

Our work is concerned with densely connected networks aimed at improving infor-

mation flow [146, 171, 172]. While most works are concerned with computer vision

tasks or general machine learning, there are several notable works in the NLP do-

main. Ding et al. [173] proposed Densely Connected BiLSTMs for standard text

classification tasks. In the MRC domain, DCN+ [112] used Residual Co-Attention

encoders. QANet [118] used residual self-attentive convolution encoders. While

the usage of highway/residual networks is not an uncommon sight in NLP, the

usage of bidirectional attention as a skip-connector is new. Moreover, our work

introduces new cross-hierarchical connections, which help to increase the number

of interaction interfaces between P/Q.

Overall, we propose DecaProp (Densely Connected Attention Propagation), a novel

architecture for machine reading comprehension. DecaProp achieves a significant

gain of 2.6%− 14.2% absolute improvement in F1 score over the existing state-of-

the-art on four challenging MRC datasets, namely NewsQA [46], Quasar-T [63],

SearchQA [48] and NarrativeQA [64].
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Figure 5.1: Architecture of BAC.

5.2 Proposed Method

5.2.1 Bidirectional Attention Connectors (BAC)

This section introduces the Bidirectional Attention Connectors (BAC) module

which is central to our overall architecture. The BAC module can be thought

of as a connector component that connects two sequences/layers. Figure 5.1 shows

the BAC module.

The key goals of this module are to (1) connect any two layers of P/Q in the

network, returning a residual feature that can be propagated to deeper layers, (2)

model cross-hierarchical interactions between P/Q and (3) minimize any costs in-

curred to other network components such that this component may be executed

multiple times across all layers. Notably, signals still have to back-propagate

through the BAC parameters. However, this still enjoys the benefits when con-

necting far away layers and also by increasing the number of pathways.

Let P ∈ R`p×d and Q ∈ R`q×d be inputs to the BAC module. The initial steps in

this module remain identical to standard bi-attention in which an affinity matrix

is constructed between P/Q. In our bi-attention module, the affinity matrix is

computed via:

Eij =
1√
d

F(pi)
>F(qj) (5.1)

where F(.) is a standard dense layer with ReLU activations and d is the dimen-

sionality of the vectors. Note that this is the scaled dot-product attention from
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[24]. Next, we learn an alignment between P/Q as follows:

A = Softmax(E>)P and B = Softmax(E)Q (5.2)

where A,B are the aligned representations of the query/passsage respectively. In

many standard neural QA models, it is common to pass an augmented matching

vector of this attentional representation to subsequent layers. This often refers to

common element-wise operations such as the subtraction or multiplication. For

this purpose, functions such as f = W ([bi ; pi; bi � pi, bi − pi]) + b have been used

[34]. However, simple/naive augmentation would not suffice in our use case. Even

without augmentation, every call of bi-attention returns a new d-dimensional vector

for each element in the sequence. If the network has l layers, then connecting all

pairwise layers would require l2 connectors and therefore an output dimension of

l2×d. This is not only computationally undesirable but also require a large network

at the end to reduce this vector. With augmentation, this problem is aggravated.

Hence, standard birectional attention is not suitable here.

To overcome this limitation, we utilize a parameterized function G(.) to compress

the bi-attention vectors down to scalar.

gpi = [G([bi; pi]);G(bi − pi);G(bi � pi)] (5.3)

where gpi ∈ R3 is the output (for each element in P ) of the BAC module. This

is done in an identical fashion for ai and qi to form gqi for each element in Q.

Intuitively, g∗i where ∗ = {p, q} are the learned scalar attention that is propagated

to upper layers. Since there are only three scalars, they will not cause any problems

even when executed for multiple times. As such, the connection remains relatively

lightweight. This compression layer can be considered as a defining trait of the

BAC, differentiating it from standard bi-attention.

Naturally, there are many potential candidates for the function G(.). One natural

choice is the standard dense layer (or multiple dense layers). However, dense layers

are limited as they do not compute dyadic pairwise interactions between features

that inhibit its expressiveness. On the other hand, factorization-based models are

known to not only be expressive and efficient, but also able to model low-rank

structure well.
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Figure 5.2: Architecture of DecaProp.

To this end, we adopt factorization machines (FM) [144] as G(.). The FM layer is

defined as:

G(x) = w0 +
n∑
i=1

wi xi +
n∑
i=1

n∑
j=i+1

〈vi, vj〉 xi xj (5.4)

where v ∈ Rd×k, w0 ∈ R and wi ∈ Rd. The output G(x) is a scalar. Intuitively, this

layer tries to learn pairwise interactions between every xi and xj using factorized

(vector) parameters v. In the context of our BAC module, the FM layer is trying

to learn a low-rank structure from the ‘match’ vector (e.g., bi−pi, bi�pi or [bi; pi]).

Finally, we note that the BAC module takes inspiration from the main body of

our CAFE model [174] for entailment classification and natural language inference.

However, this work demonstrates the usage and potential of the BAC as a residual

connector.

5.2.2 Densely Connected Attention Propagation (DecaProp)

In this section, we describe our proposed model in detail. Figure 5.2 depicts a

high-level overview of our proposed architecture of DecaProp.
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5.2.2.1 Contextualized Input Encoder

The inputs to our model are two sequences P and Q which represent passage and

query respectively. Given Q, the task of the MRC model is to select a sequence of

tokens in P as the answer. Following many MRC models, we enhance the input

representations with (1) character embeddings (passed into a BiRNN encoder), (2)

a binary match feature which denotes if a word in the query appears in the passage

(and vice versa) and (3) a normalized frequency score denoting how many times

a word appears in the passage. The Char BiRNN of hc dimensions, along with

two other binary features, is concatenated with the word embeddings wi ∈ Rdw , to

form the final representation of dw + hc + 2 dimensions.

5.2.2.2 Densely Connected Attention Encoder (DecaEnc)

The DecaEnc accepts the inputs P and Q from the input encoder. DecaEnc is a

multi-layered encoder with k layers. For each layer, we pass P/Q into a bidirec-

tional RNN layer of h dimensions. Next, we apply our attention connector (BAC)

to HP/HQ ∈ Rh where H represents the hidden state outputs from the BiRNN

encoder where the RNN cell can either be a GRU or LSTM encoder. Let d be

the input dimensions of P and Q, then this encoder goes through a process of

d → h → h + 3 → h in which the BiRNN at layer l + 1 consumes the propagated

features from layer l.

Intuitively, this layer models P/Q whenever they are at the same network hierar-

chical level. At this point, we include ‘asynchronous’ (cross hierarchy) connections

between P and Q. Let P i, Qi denote the representations of P,Q at layer i. We

apply the Bidirectional Attention Connectors (BAC) as follows:

Zij
p , Z

ij
q = FC(P i, Qj) ∀ i, j = 1, 2 · · ·n (5.5)

where FC represents the BAC component. This densely connects all representations

of P and Q across multiple layers. Zij
∗ ∈ R3×` represents the generated features

for each ij combination of P/Q. In total, we obtain 3n2 compressed attention

features for each word. Intuitively, these features capture fine-grained relationships

between P/Q at different stages of the network flow. The output of the encoder is
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the concatenation of all the BiRNN hidden states H1, H2 · · ·Hk and Z∗ which is a

matrix of (nh+ 3n2)× ` dimensions.

5.2.2.3 Densely Connected Core Architecture (DecaCore)

This section introduces the core architecture of our proposed model. This compo-

nent corresponds to the interaction segment of standard MRC model architecture.

Gated Attention The outputs of the densely connected encoder are then passed

into a standard gated attention layer. This corresponds to the ‘interact’ component

in many other popular MRC models that model Q/P interactions with attention.

While there are typically many choices of implementing this layer, we adopt the

standard gated bi-attention layer following [113].

S =
1√
d

F(P )>(F(Q) (5.6)

P̄ = Softmax(S)Q (5.7)

P ′ = BiRNN(σ(Wg([P ; P̄ ]) + bg)� P ) (5.8)

where σ is the sigmoid function and F (.) are dense layers with ReLU activations.

The output P ′ is the query-dependent passage representation.

Gated Self-Attention Next, we employ a self-attention layer, applying Equa-

tion (5.8) yet again on P ′, matching P ′ against itself to form B, the output repre-

sentation of the core layer. The key idea is that self-attention compares each word

in the query-dependent passsage representation against all other words, enabling

each word to benefit from a wider global view of the context.

Dense Core At this point, we note that there are two intermediate represen-

tations of P , i.e., one after the gated bi-attention layer and one after the gated

self-attention layer. We denote them as U1, U2 respectively. Unlike the Densely

Connected Attention Encoder, we no longer have two representations at each hi-

erarchical level since they have already been ‘fused’. Hence, we apply a one-sided

BAC to all permutations of [U1, U2] and Qi, ∀i = 1, 2 · · · k. Note that the one-sided
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BAC only outputs values for the left sequence, ignoring the right sequence.

Rkj = F ′C(U j, Qk) ∀ k = 1, 2 · · ·n,∀j = 1, 2 (5.9)

where Rkj ∈ R3×` represents the connection output and F ′C is the one-sided BAC

function. All values of Rkj, ∀j = 1, 2 , ∀k = 1, 2 · · ·n are concatenated to form

a matrix R′ of (2n × 6) × `, which is then concatenated with U2 to form M ∈
R`p×(d+12n). This final representation is then passed to the answer prediction layer.

5.2.2.4 Answer Pointer and Prediction Layer

Next, we pass M through a stacked BiRNN model with two layers and obtain two

representations, H†1 and H†2 respectively.

H†1 = BiRNN(M) andH†2 = BiRNN(H†1) (5.10)

The start and end pointers are then learned via:

p1 = Softmax(w1H
†
1) and p2 = Softmax(w2H

†
2) (5.11)

where w1, w2 ∈ Rd are parameters of this layer. To train the model, following

prior work, we minimize the sum of negative log probabilities of the start and end

indices:

L(θ) = − 1

N

N∑
i

log(p1
y1i

) + log(p2
y2i

) (5.12)

where N is the number of samples, y1
i , y

2
i are the true start and end indices. pk is

the k-th value of the vector p. The test span is chosen by finding the maximum

value of p1
k, p

2
l where k ≤ l.

5.3 Experiments

This section describes our experimental setup and empirical results.
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5.3.1 Datasets and Competitor Baselines

We conduct experiments on four challenging QA datasets which are described as

follows:

NewsQA This challenging MRC dataset [46] comprises 100k QA pairs. Pas-

sages are relatively long at about 600 words on average. This dataset has also been

extensively used in benchmarking MRC models. On this dataset, the key competi-

tors are BiDAF [110], Match-LSTM [34], FastQA/FastQA-Ext [175], R2-BiLSTM

[176], AMANDA [117].

Quasar-T This dataset [63] comprises 43k factoid-based QA pairs and is con-

structed using ClueWeb09 as its backbone corpus. The key competitors on this

dataset are BiDAF and the Reinforced Ranker-Reader (R3) [88]. Several variations

of the ranker-reader model (e.g., SR, SR2), which use the Match-LSTM underneath,

are also compared against.

SearchQA This dataset [48] aims to emulate the search and retrieval process in

question answering applications. The challenge involves reasoning over multiple

documents. In this dataset, we concatenate all documents into a single passage

context and perform MRC over the documents. The competitor baselines on this

dataset are Attention Sum Reader (ASR) [177], Focused Hierarchical RNNs (FH-

RNN) [178], AMANDA [117], BiDAF, AQA [179] and the Reinforced Ranker-

Reader (R3) [88].

NarrativeQA This dataset [64] is a recent QA dataset that involves comprehen-

sion over stories. We use the summaries setting which is closer to a standard QA

or reading comprehension setting. We compare with the baselines in the original

paper, namely Seq2Seq, Attention Sum Reader and BiDAF. We also compare with

the recent BiAttention + MRU model [4].

As compared to the popular SQuAD dataset [1], these datasets are either (1)

more challenging, involving more multi-sentence reasoning or (2) is concerned with

searching across multiple documents in an ‘open domain’ setting (SearchQA/Quasar-

T). Hence, these datasets accurately reflect real-world applications to a greater
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extent. However, we regard the concatenated documents as a single context for

performing reading comprehension. The evaluation metrics are the EM (exact

match) and F1 score. Note that for all datasets, we compare all models solely on

the MRC task. Therefore, for fair comparison we do not compare with algorithms

that use a second-pass answer re-ranker [180]. Finally, to ensure that our model is

not a failing case of SQuAD, we also include development set scores of our model

on SQuAD.

5.3.2 Experimental Setup

Our model is implemented in Tensorflow [152]. The sequence lengths are capped at

800/700/1500/1100 for NewsQA, SearchQA, Quasar-T and NarrativeQA respec-

tively. We use Adadelta [181] with α = 0.5 for NewsQA, and Adam optimizer

[153] with α = 0.001 for SearchQA, Quasar-T and NarrativeQA. The choice of

the RNN encoder is tuned between GRU and LSTM cells, and the hidden size is

tuned amongst {32, 50, 64, 75}. We use the cuDNN implementation of the RNN

encoder. Batch size is tuned amongst {16, 32, 64}. Dropout rate is tuned amongst

{0.1, 0.2, 0.3} and applied to all RNN and fully-connected layers. We apply vari-

ational dropout [182] in-between RNN layers. We initialize the word embeddings

with 300D GloVe embeddings [16] which are fixed during training. The size of the

character embeddings is set to 8 and the character-level RNN is set to the same

as the word-level RNN encoders. The maximum characters per word is set to 16.

The number of layers in DecaEnc is set to 3 and the number of factors in the fac-

torization kernel is set to 64. We use a learning rate decay factor of 2 and patience

of 3 epochs whenever the EM (or ROUGE-L) score on the development set does

not increase.

5.3.3 Performance Results

Overall, our results are optimistic and promising, with results indicating that De-

caProp achieves state-of-the-art performance on all four datasets.

NewsQA Table 5.1 reports the results on NewsQA. On this dataset, DecaProp

outperforms the existing state-of-the-art, i.e., the recent AMANDA model by
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Table 5.1: Results on NewsQA dataset.

Dev Test
Model EM F1 EM F1

Match-LSTM 34.4 49.6 34.9 50.0
BARB 36.1 49.6 34.1 48.2
BiDAF N/A N/A 37.1 52.3
Neural BoW 25.8 37.6 24.1 36.6
FastQA 43.7 56.4 41.9 55.7
FastQAExt 43.7 56.1 42.8 56.1
R2-BiLSTM N/A N/A 43.7 56.7
AMANDA 48.4 63.3 48.4 63.7

DecaProp 52.5 65.7 53.1 66.3

Table 5.2: Results on Quasar-T dataset.

Dev Test
EM F1 EM F1

GA 25.6 25.6 26.4 26.4
BiDAF 25.7 28.9 25.9 28.5
SR N/A N/A 31.5 38.5
SR2 N/A N/A 31.9 38.8
R3 N/A N/A 34.2 40.9
DecaProp 39.7 48.1 38.6 46.9

(+4.7% EM / +2.6% F1). Notably, AMANDA is a strong neural baseline that also

incorporates gated self-attention layers, along with question-aware pointer layers.

Moreover, our proposed model also outperforms well-established baselines such as

Match-LSTM (+18% EM / +16.3% F1) and BiDAF (+16% EM / +14% F1).

Quasar-T Table 5.2 reports the results on Quasar-T. Our model achieves state-

of-the-art performance on this dataset, outperforming the state-of-the-art R3 (Re-

inforced Ranker Reader) by a considerable margin of +4.4% EM / +6% F1. Perfor-

mance gain over standard baselines such as BiDAF and GA are even larger (> 15%

F1).

SearchQA Table 5.3 and Table 5.4 report the results on SearchQA. On the

original setting, our model outperforms AMANDA by +15.4% EM and +14.2%

in terms of F1 score. On the overall setting, our model outperforms both AQA

(+18.1% EM / +18% F1) and Reinforced Reader Ranker (+7.8% EM / +8.3%
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Table 5.3: Results on SearchQA (original) dataset.

Dev Test
Acc F1n Acc F1n

TF-IDF max 13.0 N/A 12.7 N/A
ASR 43.9 24.2 41.3 22.8
FH-RNN 49.6 56.7 46.8 53.4
AMANDA 48.6 57.7 46.8 56.6
DecaProp 64.5 71.9 62.2 70.8

Table 5.4: Results on SearchQA dataset.

Dev Test
EM F1 EM F1

BiDAF 31.7 37.9 28.6 34.6
AQA 40.5 47.4 38.7 45.6
R3 N/A N/A 49.0 55.3
DecaProp 58.8 65.5 56.8 63.6

Table 5.5: Results on NarrativeQA (Story Summaries) dataset.

Test / Validation
BLEU-1 BLEU-4 METEOR ROUGE-L

Seq2Seq 15.89 / 16.10 1.26 / 1.40 4.08 / 4.22 13.15 / 13.29
ASR 23.20 / 23.54 6.39 / 5.90 7.77 / 8.02 22.26 / 23.28

BiDAF 33.72 / 33.45 15.53 / 15.69 15.38 / 15.68 36.30 / 36.74
MRU - / 36.55 - /19.79 - / 17.87 - / 41.44

DecaProp 42.00 / 44.35 23.42 / 27.61 23.42 / 21.80 40.07 / 44.69

F1). Both models are reinforcement learning based extensions of existing strong

baselines such as BiDAF and Match-LSTM.

NarrativeQA Table 5.5 reports the results on NarrativeQA. Our proposed model

outperforms all baseline systems (Seq2Seq, ASR, BiDAF) in the original paper. On

average, there is a ≈ +5% improvement across all metrics.

SQuAD Table 5.6 reports dev scores of our model against several representative

models on the popular SQuAD benchmark. While our model does not achieve

state-of-the-art performance, our model can outperform the base R-NET (both

our implementation as well as the published score). Our model achieves reasonably

competitive performance.
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Table 5.6: Results on SQuAD (Dev Set) dataset.

Model EM F1

DCN [111] 66.2 75.9
DCN + CoVE [85] 71.3 79.9

R-NET (Wang et al.) [113] 72.3 80.6
R-NET (Our re-implementation) 71.9 79.6

DecaProp (This work) 72.9 81.4
QANet [118] 73.6 82.7

5.3.4 Ablation Study

We conduct an ablation study on the NewsQA development set (Table 5.7). More

specifically, we report the development scores of seven ablation baselines. In (1), we

removed the entire DecaProp architecture, reverting it to an enhanced version of

the original R-NET model. For a fairer comparison, we make several enhancements

to the R-NET model as follows: (1) We replaced the additive attention with scaled

dot-product attention similar to ours. (2) We added shortcut connections after

the encoder layer. (3) We replaced the original Pointer networks with our BiRNN

Pointer Layer. We found that these enhancements consistently lead to improved

performance. The original R-NET performs at ≈ 2% lower on NewsQA. In (2),

we removed DecaCore and passed U2 to the answer layer instead of M . In (3), we

removed the DecaEnc layer and used a 3-layered BiRNN instead. In (4), we kept

the DecaEnc but only compared layers of the same hierarchy and omitted cross

hierarchical comparisons. In (5), we removed the Gated Bi-Attention and Gated

Self-Attention layers. Removing these layers simply allow previous layers to pass

through. In (6-7), we varied n, the number of layers of DecaEnc. Finally, in (8-9),

we varied the FM with linear and nonlinear feed-forward layers.

From (1), we observe a significant gap in performance between DecaProp and R-

NET. This demonstrates the effectiveness of our proposed architecture. Overall,

the key insight is that all model components are crucial to DecaProp. Notably, the

DecaEnc seems to contribute the most to the overall performance. Finally, Figure

5.3 shows the performance plot of the development EM metric (NewsQA) over

training. We observe that the superiority of DecaProp over R-NET is consistent

and relatively stable.
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Table 5.7: Ablation study on NewsQA development set.

Ablation EM F1
(1) Remove All (R-NET) 48.1 61.2
(2) w/o DecaCore 51.5 64.5
(3) w/o DecaEnc 49.3 62.0
(4) w/o Cross Hierarchy 50.0 63.1
(5) w/o Gated Attention 49.4 62.8
(6) Set DecaEnc n = 2 50.5 63.4
(7) Set DecaEnc n = 4 50.7 63.3
(8) DecaProp (Linear) 50.9 63.0
(9) DecaProp (Nonlinear) 48.9 60.0
Full Architecture (n = 3) 52.5 65.7

0 4 8 12 16 20 24 28
(pRch

20

25

30

35

40

45

50

(x
Dc

t 0
Dt

ch
 ((

0
)

DecD3rRp
5-1(T

Figure 5.3: DecaProp versus R-NET on NewsQA.

5.4 Summary

We proposed a new Densely Connected Attention Propagation (DecaProp) mecha-

nism. For the first time, we explore the possibilities of using bidirectional attention

as a skip-connector. We proposed Bidirectional Attention Connectors (BAC) for

efficient connection of any two arbitrary layers, producing connectors that can be

propagated to deeper layers. This enables a shortened signal path, aiding infor-

mation flow across the network. Additionally, the modularity of the BAC allows

it to be easily equipped to other models and even other domains. Our proposed

architecture achieves state-of-the-art performance on four challenging QA datasets,

outperforming strong and competitive baselines such as Reinforced Reader Ranker
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(R3), AMANDA, BiDAF and R-NET. The source code for our model and experi-

ments can be found at https://github.com/vanzytay/NIPS2018_DECAPROP.

https://github.com/vanzytay/NIPS2018_DECAPROP


Chapter 6

Introspective Curriculum

Pointer-Generator for Machine

Reading Comprehension over

Long Narratives

Teaching machines to read and comprehend is a fundamentally interesting and

challenging problem in AI research [1, 5, 46]. While there have been considerable

and broad improvements in reading and understanding textual snippets, the ability

for machines to read/understand complete stories and novels is still in infancy [49].

The challenge becomes insurmountable in lieu of not only the large context but also

the intrinsic challenges of narrative text which arguably requires a larger extent of

reasoning. As such, this motivates the inception of relevant, interesting benchmarks

such as the NarrativeQA Reading Comprehension challenge. In this chapter1, we

tackle the full story setting instead of the summary setting which, inherently, is a

much harder task [49].

1This chapter is published as Simple and Effective Curriculum Pointer-Generator Networks
for Reading Comprehension over Long Narratives, Proceedings of ACL 2019 [65].

89
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6.1 Introduction

The challenges of having a long context have been traditionally mitigated by a

two-step approach - retrieval first and then reading second [89, 108, 114]. This

difficulty mirrors the same challenges of open domain question answering, albeit

introducing additional difficulties due to the nature of narrative text (stories and

retrieved excerpts need to be coherent). While some recent works have proposed

going around by training retrieval and reading components end-to-end, this work

follows the traditional paradigm with a slight twist. We train our models to be

robust regardless of whatever is retrieved. This is in a similar spirit to domain

randomization [183].

In order to do so, we propose a diverse curriculum learning scheme [184] based

on two concepts of difficulty. The first, depends on whether the answer exists

in the context (answerability), aims to bridge the gap between training time and

inference time retrieval. On the other hand, and the second, depends on the size

of the retrieved documents (coherence and understandability). While conceptually

simple, we found that these heuristics help improve the performance of the QA

model. To the best of our knowledge, we are the first to incorporate these notions

of difficulty in QA reading models.

All in all, our model tries to learn to generate the answer even if the correct answer

does not appear as evidence which acts as a form of generative pretraining during

training. As such, this is akin to learning to guess, largely motivated by how

humans are able to extrapolate/guess even when given access to a small fragment

of a film/story. In this case, we train our model to generate answers, making do

with whatever context it was given. To this end, a curriculum learning scheme

controls the extent of difficulty of the context given to the model.

At this juncture, it would be easy to realize that standard pointer-based reading

comprehension models would not adapt well to this scheme, as they fundamentally

require the golden label to exist within the context [34, 110]. As such, our overall

framework adopts a pointer-generator framework [185] that learns to point and

generate, conditioned on not only the context but also the question. This relaxes

this condition, enabling us to train our models with diverse views of the same story

which is inspired by domain randomization [183]. For our particular task at hand,
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the key idea is that, even if the answer is not found in the context, we learn to

generate the answer despite the noisy context.

Finally, our method also incorporates a novel Introspective Alignment Reader (IAL

Reader). The key idea of the IAL mechanism is to introspect over decomposed

alignments using block-style local self-attention. This not only imbues our model

with additional reasoning capabilities but enables a finer-grained (and local-globally

aware) comparison between soft-aligned representations. All in all, our IAL mech-

anism can be interpreted as learning a matching over matches.

All in all, the prime contributions of this work are summarized as follows:

• We propose a curriculum learning based Pointer-Generator model for reading

comprehension over narratives (long stories). For the first time, we propose

two different notions of difficulty for constructing diverse views of long stories

for training. We show that this approach achieves better results than existing

models adapted for open-domain question answering.

• Our proposed model incorporates an Introspective Alignment Reader (IAL

Reader) which uses block-based self-attentive reasoning over decomposed

alignments. Ablative experiments show improvements of our IAL layer over

the standard usage of vanilla self-attention.

• Our proposed framework (IAL-CPG) achieves state-of-the-art performance

on the NarrativeQA reading comprehension challenge. On metrics such as

BLEU-4 and Rouge-L, we achieve a 17% relative improvement over prior

state-of-the-art and a 10 times improvement in terms of BLEU-4 score over

BiDAF, a strong span prediction based model.

6.2 Proposed Method

This section outlines the components of our proposed architecture (IAL-CPG).

Since our problem is mainly dealing with extremely long sequences, we employ

an initial retrieval phrase by either using the answer or question as a cue (query

for retrieving relevant chunks/excerpts). The initial retrieval is unavoidable since

supporting up to 20K-30K words in computational graphs is still not manageable
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Figure 6.1: Architecture of IAL-CPG.

even with top-grade GPUs. The retrieval stage is controlled by our curriculum

learning process in which the details are deferred to subsequent sections. The

overall illustration of this framework is depicted in Figure 6.1.

6.2.1 Introspective Alignment Reader

This section introduces our proposed Introspective Alignment Reader (IAL Reader).

Input and Context Encoding Our model accepts two inputs, context C and

question Q. Each input is a sequence of words. We pass each sequence into a

shared Bidirectional LSTM layer.

Hc = BiLSTM(C) and Hq = BiLSTM(Q)
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where Hc ∈ R`c×d and Hq ∈ R`q×d are the hidden representations for C and Q

respectively.

Introspective Alignment Next, we passHc, Hq into an alignment layer. Firstly,

we compute a soft attention affinity matrix between Hc and Hq as follows:

Eij = F (hci)
> F (hqj) (6.1)

where hci is the i-th word in the context and hqj is the j-th word in the question. F ( · )
is a standard nonlinear transformation function (i.e., F (x) = σ(Wx + b), where

σ indicates non-linearity function), and is shared between context and question.

E ∈ R`c×`q is the soft matching matrix. To learn alignments between context and

question, we compute:

A = Softmax(E)Hq

where A ∈ R`c×d is the aligned representation of Hc.

Reasoning over Alignments Next, to reason over alignments, we compute a

self-attentive reasoning over decomposed alignments:

Gij = Fs([Ai;H
c
i ;Ai −Hc

i , Ai �Hc
i ])
> ·

Fs([Aj;H
c
j ;Aj −Hc

j , Aj �Hc
j ])

(6.2)

where square brackets [ · ; · ] denote vector concatenation, Fs( · ) is another non-

linear transformation layer which projects onto 4d dimensions. i is the positional

index of each word token. Intuitively, Ai comprises softly aligned question repre-

sentations with respect to the context. The usage of the Hadamard and Subtraction

operators helps to enhance the degree of comparison/matching. Hence, by includ-

ing an additional local reasoning over these enhanced alignment vectors, our model

can be interpreted as introspecting over alignment matches.

Local Block-based Self-Attention Since `c is large in our case (easily ≥ 2000),

computing Equation (6.2) may become computationally prohibitive. As such, we

compute the scoring function for all cases where |i − j| ≤ b, in which, b is a
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predefined hyperparameter and also the block size. Intuitively, the initial alignment

layer (i.e., Equation (6.1)) already considers a global view. As such, this self-

attention layer can be considered as a local-view perspective, confining the affinity

matrix computation to a local window of b. Finally, to compute the introspective

alignment representation, we compute:

B = Softmax(G) [A;Hc;A−Hc;A�Hc]

where B`c×4d is the introspective aligned representation of A. Finally, we use

another d-dimensional BiLSTM layer to aggregate the aligned representations:

Y = BiLSTM([B;A;Hc;A−Hc;A�Hc]) (6.3)

where Y ∈ R`c×2d is the final contextual representation of context C.

6.2.2 Pointer-Generator Decoder

Motivated by recent, seminal work in neural summarization, our model adopts

a pointer-generator architecture [185]. Given Y (the question infused contextual

representation), we learn to either generate a word from vocabulary, or point to

a word from the context. The decision to generate or point is controlled by an

additive blend of several components such as the previous decoder state and/or

question representation.

The pointer-generator decoder in our framework uses a LSTM decoder2 with a cell

state ct ∈ Rn and hidden state vector ht ∈ Rn. At each decoding time step t, we

compute an attention over Y as follows:

gi = tanh(Fa(yi) + Fh(ht−1) + Fq(H
q)), (6.4)

ai = g>i wa , yt =
`c∑
i=0

ai · yi (6.5)

where Fa( · ) and Fh( · ) are nonlinear transformations projecting to n dimensions.

i is the positional index of the input sequence. Fq( · ) is an additional attentive

pooling operator over the question representation Hq (after the context encoding

2To initialize the LSTM, we use an additional projection layer over the mean pooled repre-
sentation of Y similar to [186].
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layer). The semantics of the question may be lost after the alignment based encod-

ing. As such, this enables us to revisit the question representation to control the

decoder. yt ∈ Rn is the context representation at decoding time step t and a ∈ R`c

is an attention distribution over the context words which is analogous to the final

probability distributions that exist in typical span prediction models. Next, we

compute the next hidden state via:

ht, ct = LSTM([yt;wt−1], ht−1, ct−1)

where wt−1 is the (t− 1)th token in the ground truth answer (teacher forcing). To

learn to generate, we compute:

vt = Wv(ht) + bv (6.6)

where vt ∈ R|Vg |, Vg is the global vocabulary size. The goal of the pointer-generator

decoder is to choose between the abstractive distribution vt over the vocabulary

(see Equation (6.6)) and the extractive distribution at (see Equation (6.5)) over

the context text tokens. To this end, we learn a scalar switch pt ∈ R:

pt = sigmoid(Fpc(ct) + Fph(ht) + Fpy(yt))

where Fpc( · ), Fph( · ), Fpy( · ) are linear transformation layers (without bias) which

project ct, ht and yt into scalar values. To control the blend between the attention

context and the generated words, we use a linear interpolation between at and vt.

The predicted word wt at time step t is therefore:

wt = argmax(pt · at + (1− pt)vt)

Note that we scale (append and prepend) at and vt with zeros to make them the

same length (i.e., `c + |Vg|). The LSTM decoder runs for a predefined fix answer

length. During inference, we simply use greedy decoding to generate the output

answer.
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6.2.3 Curriculum Reading

A key advantage of the pointer-generator is that it allows us to generate answers

even if the answers do not exist in the context. This also enables us to explore

multiple (diverse) views of contexts to train our model. However, to this end, we

must be able to identify effectively the most useful retrieved context evidences for

the training. For that purpose, we propose to use a diverse curriculum learning

scheme which is based on two intuitive notions of difficulty: answerability and

understandability.

Answerability It is regarded as common practice to retrieve excerpts based by

using the correct answer as a cue (during training). This establishes an additional

gap between training and inference since during inference, correct answers are not

available. This measure aims to bridge the gap between question and answer (as a

query prompt for passage retrieval). In this case, we consider the set of documents

retrieved based on questions as the hard setting, H. Conversely, the set of retrieved

documents using answers is regarded as the easy setting, E.

Understandability This aspect controls how understandable the overall re-

trieved documents are as a whole. The key idea of this setting is to control the

paragraph/chunk size. Intuitively, a small paragraph/chunk size would enable more

relevant components to be retrieved from the document. However, its understand-

ability might be affected if paragraph/chunk size is too small. Conversely, a larger

chunk size would be easier to be understood. To control the level of understand-

ability, we pre-define several options of chunk sizes (e.g., {50, 100, 200, 500}) which

will be swapped and determined during training.

To combine the two measures described above, we comprise an easy-hard set pair

for each chunk size, i.e., {Ek, Hk}, where:

k ∈ {50, 100, 200, 500},

En ← F (corpus, answer, n),

Hn ← F (corpus, question, n)

(6.7)

F (.) is an arbitrary ranking function which may or may not be parameterized, and

n is the size of each retrieved chunk.
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Algorithm 6.1 Two-layer Curriculum Reading Algorithm

1: chunk list← {50, 100, 200, 500}
2: n← sample i in chunk list
3: chunk list← chunk list \ {n}
4: En ← F (Corpus,Answers, n)
5: Hn ← F (Corpus,Questions, n)
6: D ← En . initial training set
7: count← 0 . number of swaps within a chunk size
8: for i← 1 to numEpochs do
9: Train(D)

10: score← Evaluate(Dev set)
11: if score < bestDev then
12: if count <= 1/δ then
13: D ← Swap(D,En, Hn, δ) . Swap δ percent of easy set with the hard set
14: count← count+ 1
15: else
16: Repeat step 3 to 8 . Replace train set with new easy set of diff chunk size

17: else
18: bestDev = score

Two-layer Curriculum Reading Algorithm As our model utilizes two above

measures of difficulty, there lies a question on whether we should swap one measure

at a time or swap both whenever the model meets the failure criterion. In our case,

we find that prioritizing answerability over understandability is a better choice.

More concretely, at the beginning of the training, we start with an easy set Ek of a

random chunk size k. When the failure criterion is met (e.g. the model score does

not improve on the validation set), we randomly swap a small percent δ (e.g., 5% in

our experiments of the easy set Ek with the hard set Hk within its own chunk size

group k to improve the answerability. In this case, after 1
δ

failures, the model runs

out of easy set Ek and is completely based on the hard set Hk. At this junction, we

swap the model for understandability, replacing the training set with a completely

new easy set El of another chunk size l, and repeat the above process. The formal

description of our proposed curriculum reading is introduced in Algorithm 6.1.

6.3 Experiments

We conduct our experiments on the NarrativeQA reading comprehension challenge.

The NarrativeQA dataset was introduced earlier in Chapter 5. However, we use

the full story setting in this chapter.
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6.3.1 Experimental Setup

This section introduces our experimental setup.

Model Hyperparameters We implement our model in Tensorflow. Our model

is trained with Adadelta [181]. The initial learning rate is tuned amongst {0.1, 0.2, 0.5}.
The L2 regularization is tuned amongst {10−8, 10−6, 10−5}. The size of the LSTM

at the encoder layer is set to 128 and the decoder size is set to 256. The block

size b for the Introspective Alignment Reader Layer is set to 200. We initialize

our word embeddings with pre-trained GloVe vectors [187] which are not updated

during training. In our early experiments, we also masked entities following the

original work [49], however, we did not observe obvious difference in performance.

This is probably because we do not update word embeddings during training.

Implementation Details Text is lowercased and tokenized with NLTK3. For

the retrieval of paragraphs, we use the cosine similarity between TF-IDF vec-

tor representations. TF-IDF representations are vectorized by Scikit-Learn using

an n-gram range of [1, 3] with stopword filtering. The maximum context size is

tuned amongst {2000, 4000} and reported accordingly. The paragraph/chunk size

is dynamic and configured amongst {50, 100, 200, 500}. The retrieved excerpts are

retrieved based on similarity match between context chunks and answer or ques-

tion depending on the curriculum learning scheme. We tune the maximum answer

length amongst {6, 8, 12} and the maximum question length is set to 30. Since two

answers are provided for each question, we train on both sets of answers. During

the construction of the golden labels, we first perform an n-gram search of the

answer in the context. The largest n-gram match is allocated indices belonging

to the context (i.e., [1,`c]). For the remainder words, stopwords are automatically

allocated indices in the global vocabulary and non-stopwords are assigned with

context indices. If an answer word is not found, it is ignored. To construct the

global vocabulary for the pointer generator decoder and avoid story-specific words,

we use words that appear in at least 10 stories.

3https://www.nltk.org/

https://www.nltk.org/
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Evaluation During evaluation, we (1) remove the full stop at the end of answers

and (2) lowercase both answers. We use the BLEU, Rouge and METEOR scorers

provided at https://github.com/tylin/coco-caption.

Baselines As baselines, we compare the proposed model with reported results in

[49]. Additionally, we include several baselines which we implement by ourselves.

This is in the spirit of providing better (and fairer) comparisons. The compared

baselines are listed below:

• Attention Sum Reader (ASR) [177] - This is a simple baseline for reading

comprehension. Aside from the results on [49], we report our own implemen-

tation of the ASR model. Our implementation follows [49] closely.

• Reinforced Reader Ranker (R3) [108] - This is a state-of-the-art model

for open domain question answering, utilizing reinforcement learning to select

relevant passages to train the reading comprehension model. Our objective

is to get a sense of how well do open-domain models work on understanding

narratives.

• RNET + PG / CPG [113] - This is a strong, competitive model for para-

graph level reading comprehension. We replace the span prediction layer in

RNET with a pointer generator (PG) model with the exact setup as our

model. We also investigate equipping RNET + PG with our curriculum

learning mechanism (curriculum pointer generator).

6.3.2 Experimental Results

Table 6.1 reports the results of our approach on the NarrativeQA benchmark.

Results are reported from [49]. The numbers besides the model name denote the

total context size. Rel. Gain reports the relative improvement of our model and

the best baseline reported in [49] on a specific context size setting.

Our approach achieves state-of-the-art results as compared to prior work [49].

When compared to the best ASR model in [49], the relative improvement across all

metrics are generally high, ranging from +17% to +51%. The absolute improve-

ments range from approximately +1% to +3%.

https://github.com/tylin/coco-caption
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Table 6.1: Results on NarrativeQA (Full) reading comprehension dataset.

Dev Set Test Set
Model ` BLEU-1 BLEU-4 Meteor Rouge BLEU-1 BLEU-4 Meteor Rouge

IR (BLEU) - 6.73 0.30 3.58 6.73 6.52 0.34 3.35 6.45
IR (ROUGE) - 5.78 0.25 3.71 6.36 5.69 0.32 3.64 6.26
IR (Cosine) - 6.40 0.28 3.54 6.50 6.33 0.29 3.28 6.43

BiDAF - 5.82 0.22 3.84 6.33 5.68 0.25 3.72 6.22
ASR 200 16.95 1.26 3.84 1.12 16.08 1.08 3.56 11.94
ASR 400 18.54 0.00 4.2 13.5 17.76 1.10 4.01 12.83
ASR 1K 18.91 1.37 4.48 14.47 18.36 1.64 4.24 13.4
ASR 2K 20.00 2.23 4.45 14.47 19.09 1.81 4.29 14.03
ASR 4K 19.79 1.79 4.60 14.86 19.06 2.11 4.37 14.02

ASR (Ours) 4K 12.03 1.06 3.10 8.87 11.26 0.65 2.66 8.68
R3 - 16.40 0.50 3.52 11.40 15.70 0.49 3.47 11.90

RNET-PG 4K 17.74 0.00 3.95 14.56 16.89 0.00 3.84 14.35
RNET-CPG 4K 19.71 2.05 4.91 15.05 19.27 1.45 4.87 15.50

IAL-CPG 4K 23.31 2.70 5.68 17.33 22.92 2.47 5.59 17.67
Rel. Gain - +31% +51% +23% +17% +20% +17% +28% +26%

Pertaining to the models benchmarked by us, we found that our re-implementation

of ASR (Ours) leaves a lot to be desired. Consequently, our proposed IAL-CPG

model almost doubles the score on all metrics compared to ASR (Ours). The R3

model, which was proposed primarily for open-domain question answering, does

better than ASR (Ours) but still fall shorts. Our RNET-PG model performs

slightly better than R3 but fails to get a score on BLEU-4. Finally, RNET-CPG

matches the state-of-the-art performance of [49]. However, we note that there might

be distinct implementation differences4 with the primary retrieval mechanism and

environment/preprocessing setup. A good fair comparison to observe the effect of

our curricum reading is the improvement between RNET-PG and RNET-CPG.

6.3.3 Ablation Study

In this section, we provide an extensive ablation study on all the major components

and features of our proposed model. Table 6.2 reports results of our ablation study.

(1-3) are architectural ablations. (4-8) are curriculum reading based ablations. (9)

investigates RL-based generation. (10-16) explore the understandability/paragraph

size heuristic. Note that (10) is the optimal scheme reported in the original set-

ting. Moreover, more permutations were tested but only representative example

are reported for brevity.

4This is made clear from how our ASR model performs much worse than [49]. We spend a
good amount of time trying to reproduce the results of ASR on the original chapter.
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Table 6.2: Ablation results on NarrativeQA development set.

Ablation BLEU-1 BLEU-4 Meteor Rouge
Original Full Setting 23.31 2.70 5.68 17.33

(1) Remove IAL Reader Layer 18.93 1.94 4.52 14.51
(2) Replace regular Self-Attention 19.61 0.96 4.38 15.24

(3) Remove Enhancement 20.25 1.76 4.92 15.14
(4) Remove PG + CR 15.30 0.91 3.85 11.36

(5) Remove CR (understandability) 20.13 2.30 4.94 16.96
(6) Remove CR (answerability) 20.13 1.82 4.92 15.77

(7) Train Easy Only 20.75 1.52 4.65 15.42
(8) Train Hard Only 19.18 1.49 4.60 14.19

(9) Add RL 21.85 2.70 5.31 16.73
(10) 50 ) 100 ) 200 23.31 2.70 5.68 17.33

(11) 50 ) 100 ) 200 ) 500 21.07 2.86 5.33 16.78
(12) 100 ) 200 ) 500 ) 50 20.18 2.60 5.50 18.14
(13) 500 ) 50 ) 100 ) 200 20.95 2.51 5.41 17.05
(14) 500 ) 200 ) 100 ) 50 17.13 2.38 4.60 15.56

(15) 50 (static) 20.91 2.57 5.35 18.78
(16) 500 (static) 19.36 2.45 4.94 16.00

Attention Ablation In ablations (1-3), we investigated the effectiveness of the

self-attention layer. In (1), we removed the entire IAL Reader layer, piping the

context-query layer directly to the subsequent layer. In (2), we replaced block-

based self-attention with the regular self-attention. Note that the batch size is

kept extremely small (e.g., 2), to cope with the memory requirements. In (3), we

removed the multiplicative and subtractive features in the IAL Reader layer. Re-

sults show that replacing the block-based self-attention with regular self-attention

hurts performance the most. However, this may be due to the requirement of re-

ducing the batch size significantly. Removing the IAL layer only sees a considerable

drop while removing the enhancement also reduces performance considerably.

Curriculum ablation In ablations (4-8), we investigated various settings per-

taining to curriculum learning. In (4), we removed the pointer generator (PG)

completely. Consequently, there is also no curriculum reading in this setting. Per-

formance drops significantly in this setting and demonstrates that the pointer gen-

erator is completely essential to good performance. In (5-6), we removed one

component from our curriculum reading mechanism. Results show that the an-

swerability heuristic is more important than the understandability heuristic. In

(7-8), we focused on non-curriculum approaches training on the easy or hard set
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only. It is surprising that training on the hard set alone gives considerably decent

performance which is comparable to the easy set. However, varying them in a

curriculum setting has significant benefits.

RL (Reinforcement Learning) Ablation In ablation (9), we investigated

techniques that pass the BLEU-score back as a reward for the model and train

the model jointly using reinforcement learning. We follow the setting of [188],

using the mixed training objective and setting λ to 0.05. We investigated using

BLEU-1, BLEU-4 and Rouge-L (and combinations of these) as a reward for our

model along with varying λ rates. Results in Table 6.2 report the best result we

obtained. We found that while RL does not significantly harm the performance

of the model, there seem to be no significant benefit in using RL for generating

answers, as opposed to other sequence transduction problems [188, 189].

Understandability Ablation From ablations (10-16), we study the effect of

understandability and alternating paragraph sizes. We find that generally starting

from a smaller paragraph and moving upwards perform better and moving the

reverse direction may have adverse effects on performance. This is made evident

by ablations (10-11). We also note that a curriculum approach beats a static

approach often.

6.3.4 Qualitative Error Analysis

Table 6.3 provides some examples of the output of our best model. First, we

discuss some unfortunate problems with the evaluation in generation based QA. In

example (1), the model predicts a semantically correct answer but gets no credit

due to a different form. In (2), no credit is given for word-level evaluation. In

(3), the annotators provide a more general answer and therefore, a highly specific

answer (e.g., moscow) does not get any credit.

Second, we observe that our model is occasionally able to get the correct (exact

match) answer. This is shown in examples (4) and (7). However, there are frequent

inability to generate phrases that make sense, even though it seems like the model

is trudging along the right direction (e.g., “to wants to be a love of john” versus

“because he wants her to have the baby” and “in the york school” versus “east
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Table 6.3: Qualitative analysis on NarrativeQA development set.

Question Model Answer Ground
Truth

(1) how many phases did the court compli-
ment competition have?

two 2

(2) who suffers from a crack addiction? dick dicky

(3) where did john and sophia go to from
the airport?

moscow russia

(4) what country did nadia’s cousin and
friend visit her from?

russia russia

(5) why is nadia kidnapped by alexei? to wants be a
love of john

because he
now wants
her to have
the baby

(6) who does mary marry? charles who is
her

charles

(7) what instrument does roberta guaspari
play?

violin violin

(8) where is the school located where
roberta takes a position as a substitute
violin teacher?

in the york
school

east harlem
in new york
city

(9) what is the profession of roberta’s hus-
band?

she is a naval he is in the
us navy

harlem in new york”). In (9), we also note a partially correct answer, even though

it fails to realize that the question is about a male and generates “she is a naval”.

Possible Directions In order to mitigate these errors and to provide more mean-

ingfful evaluations, a likely direction is to provide more semantically grounded eval-

uation, such as using another parameterized model for evaluation, i.e., having a

papaphrase neural model or NLI model assign scores to answers. Another option

is to provide human level judgements. However, the latter is expensive in terms of

manual labour.

6.4 Summary

We proposed curriculum learning based pointer-generator networks for reading long

narratives. Our proposed IAL-CPG model achieves state-of-the-art performance

on the challenging NarrativeQA benchmark. We show that sub-sampling diverse

views of a story and training them with a curriculum scheme is potentially more
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effective than techniques designed for open-domain question answering. We con-

duct extensive ablation studies and qualitative analysis, shedding light on the task

at hand.



Chapter 7

Natural Language Understanding

for Recommender Systems

The potential impact of NLU systems is not restricted to QA or standard NLP

domains. This chapter presents a compelling use case of using NLU-inspired neural

models for improving recommender systems. While neural recommender system

research has primarily been focused on interaction data [190–194], we find that

NLU-based recommender systems have a lot of potentials. In this chapter1, we

discuss our proposed Multi-Pointer Co-Attention Network (MPCN), a novel NLU-

based model for recommendation with reviews.

7.1 Introduction

On most e-commerce platforms today, the ability to write and share reviews is not

only a central feature but is also a strongly encouraged act. Reviews are typically

informative, pooling an extensive wealth of knowledge for prospective customers.

However, the extensive utility of reviews does not only end at this point. Reviews

are also powerful in capturing preferences of authors, given the rich semantic textual

information that cannot be conveyed via implicit interaction data or purchase logs.

As such, there have been immense interest in collaborative filtering systems that

1This chapter is published as Multi-Pointer Co-Attention Network for Recommendation, Pro-
ceedings of KDD 2018 [66].
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exploit review information for making better recommendations [119, 122, 124, 195–

197].

Recent advances in deep learning has spurred on various innovative models that

exploit reviews for recommendation [119, 120, 123]. The intuition is simple yet pow-

erful, i.e., each user is represented as all reviews he (she) has written and an item

is represented by all reviews that were written for it. All reviews are concatenated

to form a single user (item) document. Subsequently, a convolutional encoder is

employed to learn a single latent representation for the user (item). User and item

embeddings are then matched using a parameterized function such as Factoriza-

tion Machines [126]. This has shown to be highly performant [123], outperforming

a wide range of traditionally strong baselines such as Matrix Factorization (MF).

Models such as DeepCoNN [119], TransNets [120] and D-ATT [123] are recent

state-of-the-art models that are heavily grounded in this paradigm.

Intuitively, this modeling paradigm leaves a lot to be desired. Firstly, the naive

concatenation of reviews into a single document is unnatural, ad-hoc and noisy. In

this formulation, reviews are treated indiscriminatingly irregardless of whether they

are important or not. A user’s bad review about a coffee shop should be mostly

irrelevant when deciding if a spa is a good match. Secondly, user and item repre-

sentations are static irregardless of the target match. For example, when deciding

if a coffee shop is a good match for a user, the user’s past reviews about other cof-

fee shops (and eateries) should be highly relevant. Conversely, reviews about spas

and gyms should not be counted. Hence, a certain level of dynamism is necessary.

Finally, the only accessible interaction between user and item is through a fixed

dimensional representation, which is learned via excessive compression of large

user-item review banks into low-dimensional vector representations. For richer

modeling of user and item reviews, deeper and highly accessible interaction inter-

faces between user-item pairs should be mandatory.

Recall that reviews were fundamentally written independently, at different times,

and for different products (or by different people). There should be no reason to

squash everything into one long document if they can be modeled independently

and then combined later. More importantly, a user may write hundreds of reviews

over an extended period of time while an item may effortlessly receive a thousand

reviews. As such, existing modeling paradigms will eventually hit a dead-end.

Overall, this work proposes four major overhauls that have to be made to existing
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models, i.e., (1) reviews should be modeled independently, (2) not all reviews are

equally important and should be weighted differently, (3) the importance of each

review should be dynamic and dependent on the target match and finally, (4) user

and item reviews should interact not only through compressed vector representa-

tions but also at a deeper granularity, i.e., word-level.

To this end, we propose a Multi-Pointer Co-Attention Network (MPCN), a novel

deep learning architecture that elegantly satisfies our key desiderata. Our model is

multi-hierarchical in nature, i.e., each user is represented by n reviews of ` words

each. Subsequently, all user and item reviews (for this particular instance pair) are

matched to determine the most informative reviews. In order to do so, we design

a novel pointer-based co-attention mechanism. The pointer mechanism extracts

the named reviews for direct review-to-review matching. At this stage, another

co-attention mechanism learns a fixed dimensional representation, by modeling

the word-level interaction between these matched reviews. This forms the crux

of our review-by-review modeling paradigm. Finally, we introduce a multi-pointer

learning scheme that can be executed an arbitrary k times, extracting multiple

multi-hierarchical interactions between user and item reviews.

In summary, the prime contributions of this chapter are as follows:

• We propose a state-of-the-art NLU-based neural model for recommendation

with reviews. Our proposed model exploits a novel pointer-based learning

scheme. This enables not only noise-free but also deep word-level interaction

between user and item.

• We conduct experiments on 24 benchmark datasets. Our proposed MPCN

model outperforms all state-of-the-art baselines by a significant margin across

all datasets. Our compared baselines are highly competitive, encompassing

not only review-based models but also state-of-the-art interaction-only mod-

els. We outperform models such as Neural Matrix Factorization (NeuMF)

[198], DeepCoNN [119], D-ATT [123] and TransNet [120]. Performance im-

provements over DeepCoNN, TransNets and D-ATT are up to 71%, 19% and

5% respectively.

• We investigate the inner workings of our proposed model and provide insight

about how MPCN works under the hood. Additionally, analyzing the be-

havior of our pointer mechanism allows us to better understand the nature
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of the problem. Through analysis of our pointer mechanism, we show that

different problem domains have different patterns of ‘evidence aggregation’,

which might require different treatments and special cares.

7.2 Proposed Method

In this section, we present a layer-by-layer description of our proposed model. The

overall model architecture is illustrated in Figure 7.2. Note that this example

illustrates a single pointer example. The review gating mechanism and multi-

pointer learning are omitted for clarity.

7.2.1 Input Encoding

Our model accepts two input sequences, a (user) and b (item). Each input sequence

is a list of reviews {r1, r2 · · · r`d} where `d is the maximum number of reviews.

Embedding Layer Each review is a sequence of `w words which are represented

as one-hot encoded vectors. For a and b, we pass all words into an embedding

matrix Wd×|V | where V is the vocabulary, retrieving a d dimensional vector for

each word. Our network is hierarchical in nature, i.e., instead of representing all

user (or item) reviews as one long document, we represent each user (or item) as a

sequence of reviews. Each review is then hierarchically constructed from a sequence

of words.

Review Gating Mechanism Each review is represented as a sum of its con-

stituent word embeddings to form the vector x ∈ Rd. Intuitively, not all reviews

that a user writes and not all reviews written for a product is important. We design

a first-stage filter, i.e., a review gating mechanism that accepts each review as an

input and controls how much information passes through to the next level. Given

the input x ∈ R`r×d, which represents either a or b.

x̄i = σ(Wgxi) + bg � tanh(Wuxi + bu) (7.1)



Chapter 7 Natural Language Understanding for Recommender Systems 109

0 1 0 0 0 0 0 1

Review 
Embeddings

User Reviews Item Reviews

Review-level
Co-Attention

Row/Col 
Max Pooling

Review 
Pointers

Expand
Review To
Word-level

Expand
Review To
Word-level

Word-level
Co-Attention

Review 
Pointers

FM 

SumSum

Figure 7.1: Architecture of MPCN.

where � is the Hadamard product and σ is the sigmoid activation function. xi is

the i-th review of sequence x. Wg,Wu ∈ Rd×d and bg, bu ∈ Rn are parameters of

this layer. While the purpose of the co-attention layer is to extract important re-

views, we hypothesize that applying a pre-filter (gating mechanism) helps improve

performance on certain datasets.
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7.2.2 Review-level Co-Attention

In this layer, the aim is to select the most informative review from the review bank

of each user and item respectively.

Affinity Matrix Given a list of review embeddings from each user (a ∈ R`r×d)

and item (b ∈ R`r×d) banks, we calculate an affinity matrix between them. This is

described as follows:

sij = F (ai)
>M F (bj) (7.2)

where Md×d and S ∈ R`r×`r . F (.) is a feed-forward neural network function with l

layers. In practice, l is tuned amongst [0, 2] where l = 0 reverts Equation (7.2) to

the bilinear form.

Pooling Function By taking the row and column wise maximum of the matrix

s and using them to weight the original list of reviews a and b, we are able to derive

the standard co-attention mechanism. This is described as follows:

a′ = (G(max
col

(s)))>a and b′ = (G(max
row

(s)))>b (7.3)

There are different choices for the pooling operation. Max pooling is used here

because, intuitively it selects the review which has the maximum influence (or

affinity) with all reviews from its partner. This type of co-attention is known to

be extractive, characterized by its usage of max pooling.

Note that we apply the function G(.) to maxcol(s) and maxrow(s). In most appli-

cations, G(.) would correspond to the standard softmax function, which converts

the input vector into a probability distribution. The vectors a′, b′ would then be

the co-attentional vector representations. However, in our case, we desire further

operations on the selected reviews and therefore do not make use of these repre-

sentations. Instead, G(.) has to return a one-hot encoded vector, pointing to the

selected reviews which forms the real objective behind this co-attentional layer.

However, the Softmax function returns a continuous vector, which is unsuitable

for our use case. The usage of discrete vectors in neural architectures is known

to be difficult, as the arg max operation is non-differentiable. Hence, we leverage
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a recent advance, the Gumbel-Max trick, for learning to point. The next section

describes this mechanism.

7.2.3 Review Pointers

We leverage a recent advance, the Gumbel-Softmax [199], for incorporating discrete

random variables in the network.

Gumbel-Max In this section, we describe Gumbel-Max [200], which facilitates

the key mechanism of our MPCN model. Gumbel-Max enables discrete random

variables (e.g., one-hot vectors) to be utilized within an end-to-end neural network

architecture. Consider a k-dimensional categorical distribution where class proba-

bilities p1, · · · pk are defined in terms of unnormalized log probabilities π1, · · · πk:

pi =
exp(log(πi))∑k
j=1 exp(log(πj))

(7.4)

A one-hot sample z = (z1, · · · zk) ∈ Rk from the distribution can be drawn by using

the following:

zi =

1 , i = arg maxj(log(πj) + gj)

0 , otherwise
(7.5)

gi = − log(− log(ui)) , ui ∼ Uniform(0, 1) (7.6)

where gi is the Gumbel noise which perturbs each log(πi) term such that the

arg max operation is equivalent to drawing a sample weighted by pi, · · · pk.

Straight-Through Gumbel-Softmax In the Gumbel-Softmax, the key differ-

ence is that the arg max function is replaced by the differentiable softmax function

which is described as follows:

yi =
exp( log(πi)+gi

τ
)∑k

j=1 exp(
log(πj)+gi

τ
)

(7.7)

where τ , the temperature parameter, controls the extend of how much the output

approaches to a one hot vector. More concretely, as τ approaches to zero, the
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output of the Gumbel-Softmax distribution becomes cold, i.e., becomes closer to

a one-hot vector. In the straight-through (ST) adaptation, the forward-pass is

discretized by converting the vector output to a one-hot vector via arg max:

yi =

1 , i = arg maxj(yj)

0 , otherwise
(7.8)

However, the backward pass maintains the flow of continuous gradients which al-

lows the model to be trained end-to-end. This is useful as we only want important

reviews to be selected (i.e., hard selection) for consideration in computation of the

loss function. Notably, alternatives such as REINFORCE [201] exist. However, it

is known to suffer from high variance and slow convergence [199].

Learning to Point In order to compute a review pointer (for user and item),

we set G(.) in Equation (7.3) to use the Gumbel Softmax. However, since we are

interested only in the pointer (to be used in subsequent layers), the pointer is then

calculated as:

pa = (Gumbel(max
col

(s))) and pb = (Gumbel(max
row

(s))) (7.9)

By applying pa to a, we select the pa−th review of user a and pb−th review of item

b. The selected reviews are then passed into the next layer where rich interactions

are extracted between these reviews.

7.2.4 Word-level Co-Attention

The review-level co-attention smooths over word information as it compresses each

review into a single embedding. However, the design of the model allows the most

informative reviews to be extracted by the use of pointers. These reviews can then

be compared and modeled at word-level. This allows a user-item comparison of finer

granularity which facilitates richer interactions as compared to simply composing

the two review embeddings. Let ā, b̄ be the selected reviews using the pointer

learning scheme. Similar to the review-level co-attention, we compute a similarity

matrix between ā and b̄. The key difference is that the affinity matrix is computed
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word-by-word and not review-by-review.

wij = F (āi)
>Mw F (b̄j) (7.10)

where Mw ∈ Rd×d and w ∈ R`w×`w . Next, to compute the co-attentional represen-

tation of reviews ā, b̄, we take the mean pooling.

ā′ = (S(avgcol(w)))>ā and b̄′ = (S(avgrow(w)))>b̄ (7.11)

where S(.) is the standard Softmax function and F (.) is a standard feed-forward

neural network with l layers. The rationale for using the average pooling operator

here is also intuitive. At the review-level, a large maximum affinity score of a

review with respect to all opposite reviews (even when a low average affinity socre)

warrants it being extracted, i.e., a strong signal needs to be further investigated.

However, at a word-level, max-pooling may be biased towards identical words and

may have a great inclination to act as a word matching operator. Hence, we want

to maintain a stable co-attentive extractor. Our early empirical experiments also

justify this design. Finally ā′ and b̄′ are the output representations.

Note that, the implementation of co-attention layers (review-level and word-level)

is equivalent to only two simple matmul operations (in Tensorflow). As such,

scalability is not really a concern in our approach since this is quite efficiently

optimized on GPUs.

7.2.5 Multi-Pointer Learning

While our objective is to eliminate noisy reviews by the usage of hard pointers,

there might be insufficient information if we point to only a single pair of reviews.

Hence, we devise a multi-pointer composition mechanism. The key idea is to use

multiple pointers where the number of pointers np is a user-defined hyperparameter.

Our model runs the Review-level Co-Attention np times, with each generating a

unique pointer. Each of the np review pairs is then modeled with the Word-level

Co-Attention mechanism. The overall output is a list of vectors {ā′1, · · · ā′np
} and

{b̄′1, · · · b̄′np
}. Additionally, we also found it useful to include the sum embedding

of all words belonging to the user (item). This mainly helps in robustness, in case

where user and item do not have any matching signals that were found by our
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Figure 7.2: Neural Network and Additive based Multi-Pointer Learning.

pointer mechanism. We explore three ways to compose these embeddings (Figure

7.2).

• Concatenation - All pointer outputs are concatenated, e.g., [ā′1; · · · ā′np
].

This has implications to the subsequent layers, especially if np is large. Hence,

we consider the next two alternatives.

• Additive Composition - All pointer outputs are summed, e.g., sum(ā′1, · · · ā′np
).

• Neural Network - All pointer outputs are concatenated and passed through

a single non-linear layer with ReLU (σr) activations, e.g., σr(W ([ā′1; · · · ā′np
])+

b) which maps the concatenated vector into a d dimensional vector.

Note that this is applied to b̄′ as well but omitted for brevity. Let the output of this

layer be af and bf . In our experiments, we tune amongst the three above-mentioned

schemes. More details are provided in the ablation study.

7.2.6 Prediction Layer

This layer accepts af , bf as an input. The concatenation of [af ; bf ] is passed into

a factorization machine (FM) [126]. FM accepts a real-valued feature vector and

models the pairwise interactions between features using factorized parameters. The
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FM function is defined as follows:

F (x) = w0 +
n∑
i=1

wi xi +
n∑
i=1

n∑
j=i+1

〈vi, vj〉 xi xj (7.12)

where x ∈ Rk is a real-valued input feature vector. 〈., .〉 is the dot product. The

parameters {v1 . . . vn} are factorized parameters (vectors of v ∈ Rk) used to model

pairwise interactions (xi, xj). w0 is the global bias and
∑n

i=1wixi represents a linear

regression component. The output of F (x) is a scalar, representing the strength

of the user-item interaction. The network is trained end-to-end by minimizing the

standard mean squared error loss following [123].

7.3 Experiments

In this section, we present our experimental setup and empirical evaluation.

7.3.1 Datasets

We utilize datasets from two different sources which are described as follows:

• Yelp Dataset Challenge - Yelp is an online review platform for businesses

such as restaurants, bars, spas, etc. We use the dataset from the latest

challenge2.

• Amazon Product Reviews - Amazon is a well-known e-commerce plat-

form. Users are able to write reviews for products they have purchased. We

use 23 datasets from the Amazon Product Review corpus3 [127, 128].

In total, we provide model comparisons over 24 benchmark datasets. For all

datasets, we split interactions into training, development and testing sets. we

utilize a time-based split, i.e., the last item of each user is added to the test set

while the penultimate is used for development. For Amazon, the datasets are pre-

processed in a 5-core fashion (i.e., each user and item have at least 5 reviews to be

2https://www.yelp.com/dataset/challenge
3http://jmcauley.ucsd.edu/data/amazon/

https://www.yelp.com/dataset/challenge
http://jmcauley.ucsd.edu/data/amazon/
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included). For Yelp, we use a 20-core setting, providing a comparison on a denser

dataset. We tokenize the reviews using NLTK and retain words that appear at

least 10 times in the vocabulary. We would like to emphasize that, when building

user and item representations using their respective reviews, all reviews belonging

to interactions from the test and development sets were not included. This is

to prevent the problem from reverting to a sentiment analysis task, albeit noisier

[120].

7.3.2 Compared Methods

We compare against a series of competitive baselines.

• Matrix Factorization (MF) - This is a standard and well-known baseline

for CF. It represents the user and item rating with the inner product, i.e.,

p>q.

• Factorization Machine (FM) [126] - This is a general purpose machine

learning algorithm that uses factorized parameters to model pairwise inter-

action within a real-valued feature vector. We concatenate the user-item

latent embedding together and pass it through the FM model.

• Multi-layered Perceptron (MLP) - This is a strong neural baseline for CF

and was used as a baseline in [198]. We use the same pyramidal scheme of 3

layers.

• Neural Matrix Factorization (NeuMF) [198] - This is the state-of-the-

art model for interaction-only CF. It casts the MF model within a neural

framework and combines the output with multi-layered perceptrons.

• Deep Co-Operative Neural Networks (DeepCoNN) [119] - This is a

review-based convolutional recommendation model. It trains convolutional

representations of user and item, and passes the concatenated embedding

into a FM model.

• TransNet [120] - This is an improved adaptation of DeepCoNN which in-

corporates transform layers and an additional training step that enforces the

transformed representation to be similar to the embedding of the actual tar-

get review.
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• Dual Attention CNN Model (D-ATT) [123] - This is a recently pro-

posed state-of-the-art CNN-based model that uses reviews for recommenda-

tion. This model is characterized by its usage of two forms of attentions

(local and global). A final user (item) representation is learned by concate-

nating representations learned from both local and global attentions. The

dot product between user and item representations is then used to estimate

the rating score.

Given our already extensive comparisons against the state-of-the-art models, we

omit comparisons with models such as HFT [122], Collaborative Topic Regression

[125], Collaborative Deep Learning (CDL) [202] and ConvMF [121] since they have

been outperformed by the recently proposed DeepCoNN or D-ATT model.

7.3.3 Experimental Setup

The evaluation metric is the well-known (and standard) mean-squared error which

measures the square error between the rating prediction and ground truth. We

implement all models ourselves in Tensorflow. All models are trained with Adam

optimizer [153] with an initial learning rate of 10−3. We train all models for a

maximum of 20 epochs with early stopping (i.e., if model performance does not

improve for 5 epochs) and report the test result from the best performing model

on the development set. We found that models tend to converge before 20 epochs.

However, an exception is that the MF baseline requires many more epochs to

converge. As such, we train the MF model till convergence. For interaction only

models, the embedding size is set to 50. For TransNet and DeepCoNN, the number

of filters is set to 50 and the filter size is 3. For D-ATT, the global attention layer

uses filter sizes of [2, 3, 4]. The word embedding layer is also set to 50 dimensions.

We regularize models with a dropout rate of 0.2 and a fixed L2 regularization of

10−6. Dropout is applied after all fully-connected and convolutional layers. We

use two transform layers in the TransNet model. All word embeddings are learned

from scratch as we found that using pretrained embeddings consistently degrades

performance across all datasets (and models). The maximum document length is

set to 600 words (20 reviews of 30 tokens each) which we empirically found to be a

reasonable length-specific performance bound. We assign a special delimiter token

to separate reviews within a user (item) document for DeepCoNN, TransNet, and
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Table 7.1: Results on benchmark datasets.

Interaction-based Review-based Improvement (%)
Dataset MF FM MLP NMF D-CON TNET D-ATT MPCN ∆DC ∆TN ∆DA

Yelp17 1.735 1.726 1.727 1.691 1.385 1.363 1.428 1.349 2.7 1.0 5.9
Instant Video 2.769 1.331 1.532 1.451 1.285 1.007 1.004 0.997 28.9 1.0 0.7
Instruments 6.720 1.166 1.081 1.189 1.483 1.100 0.964 0.923 60.7 19.2 4.4
Digital Music 1.956 1.382 1.361 1.332 1.202 1.004 1.000 0.970 23.9 3.5 3.1
Baby 1.755 1.614 1.585 1.598 1.440 1.338 1.325 1.304 10.4 2.6 1.6
Patio / Lawn 2.813 1.311 1.279 1.251 1.534 1.123 1.037 1.011 51.7 11.1 2.6
Gourmet Food 1.537 1.348 1.442 1.464 1.199 1.129 1.143 1.125 6.6 0.4 1.6
Automotive 5.080 1.599 1.071 1.013 1.130 0.946 0.881 0.861 31.2 9.9 2.3
Pet Supplies 1.736 1.618 1.649 1.646 1.447 1.346 1.337 1.328 9.0 1.4 0.7
Office Products 1.143 0.998 1.122 1.069 0.909 0.840 0.805 0.779 16.7 7.8 3.3
Android Apps 1.922 1.871 1.805 1.842 1.517 1.515 1.509 1.494 1.5 1.4 1.0
Beauty 1.950 1.711 1.631 1.552 1.453 1.404 1.409 1.387 4.8 1.2 1.6
Tools / Home 1.569 1.310 1.356 1.314 1.208 1.122 1.101 1.096 10.2 2.4 0.5
Video Games 1.627 1.665 1.576 1.568 1.307 1.276 1.269 1.257 4.0 1.5 1.0
Toys / Games 1.802 1.195 1.286 1.222 1.057 0.974 0.982 0.973 8.6 0.1 0.9
Health 1.882 1.506 1.522 1.415 1.299 1.249 1.269 1.238 4.9 0.9 2.5
CellPhone 1.972 1.668 1.622 1.606 1.524 1.431 1.452 1.413 7.9 1.3 2.8
Sports 1.388 1.195 1.120 1.299 1.039 0.994 0.990 0.980 6.0 1.4 1.0
Kindle Store 1.533 1.217 1.231 1.398 0.823 0.797 0.813 0.775 6.2 2.8 4.9
Home / Care 1.667 1.547 1.584 1.654 1.259 1.235 1.237 1.220 3.2 1.2 1.4
Clothing 2.396 1.492 1.462 1.535 1.322 1.197 1.207 1.187 11.4 0.8 1.7
CDs / Vinyl 1.368 1.555 1.432 1.368 1.045 1.010 1.018 1.005 4.0 0.5 1.3
Movies / TV 1.690 1.852 1.518 1.775 1.960 1.176 1.187 1.144 71.3 2.8 3.8
Electronics 1.962 2.120 1.950 1.651 1.372 1.365 1.368 1.350 1.6 1.1 1.3

D-ATT. If FM is used, the number of factors is set to 10. For our proposed model,

the number of pointers p is tuned amongst {1, 3, 5, 8, 10}. On most datasets, the

optimal performance is reached with 2− 3 pointers.

7.3.4 Experimental Results

Table 7.1 reports the results of our experiments. The best performance is in bold-

face. ∆DC ,∆TN ,∆DA are the relative improvements (%) of MPCN over Deep-

CoNN (D-CON), TransNet (T-NET) and D-ATT respectively. MPCN achieves

state-of-the-art performance, outperforming all existing methods on 24 benchmark

datasets.

Firstly, we observe that our proposed MPCN is the top performing model on all

24 benchmark datasets. This ascertains the effectiveness of our proposed model.

MPCN consistently and significantly outperforms DeepCoNN, TransNet, and D-

ATT, which are all recent competitive review-based methods for a recommendation.

The relative improvement is also encouraging with gains of up to 71% (DeepCoNN),

19% (TransNet) and 5% (D-ATT). On a majority of the datasets, performance

gains are modest, seeing an improvement of 1% − 3% for most models. Notably,
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the average percentage improvement of MPCN over DeepCoNN is 16%. The av-

erage performance gain over TransNet and D-ATT is a modest 3.2% and 2.2%

respectively.

Pertaining to the relative ranking of the review-based models, our empirical eval-

uation reaffirms the claim of [120], showing that TransNet always outperforms

DeepCoNN. However, the relative ranking of D-ATT and TransNet switches posi-

tions frequently. Notably, TransNet uses the test review(s) as an additional data

source (albeit as a training target) while D-ATT does not make use of this infor-

mation. The additional training step of TransNet is actually quite effective and

hypothetically could be used to enhance D-ATT or MPCN as well. However, we

leave that for future work.

Next, the performance of interaction-only models (MF, FM, etc.) is consistently

lower than review-based models (e.g., DeepCoNN). The relative performance of all

interaction models is generally quite inconsistent over various datasets. However,

one consistent fact is that MF performs worse than other models most of the time.

The top scoring interaction model often switches between FM and MLP.

Finally, we give readers a sense of computational runtime. We provide an estimate

that we found generally quite universal across multiple datasets. Let t be the

runtime of DeepCoNN, the runtime of MPCN p = 1 is approximately ≈ 0.4t.

MPCN with 2 and 3 pointers are 0.8t and 1.2t respectively. TransNet and D-

ATT run at ≈ 2t. On medium size datasets (e.g., Amazon Beauty), t ≈ 40s on a

GTX1060 GPU (batch size is 128). We found that if popt ≤ 2, then MPCN is faster

than DeepCoNN. While popt ≤ 5 is the threshold for being equal with D-ATT and

TransNet in terms of runtime.

7.3.5 Hyperparameter & Ablation Analysis

In this section, we study the impact of key hyperparameter settings and various

architectural choices on model performance.



Chapter 7 Natural Language Understanding for Recommender Systems 120

Table 7.2: Ablation analysis on Amazon Product Reviews dataset.

Architecture Beauty Office M-Instr Inst-Vid
(0) Default 1.290 0.770 0.827 0.975
(1) Remove Gates 1.299 0.760 0.837 0.979
(2) Remove FM 1.286 0.808 0.924 0.997
(3) Aggregation (Concat) 1.279 0.788 0.832 0.971
(4) Aggregation (Additive) 1.290 0.767 0.829 0.971
(5) set l = 0 1.293 0.776 0.830 0.976
(6) set l = 2 1.295 0.775 0.829 0.974
(7) Remove WLCA 1.296 0.778 0.831 0.999
(8) Remove RLCA 1.304 0.789 0.839 0.1003

7.3.5.1 Ablation Analysis

In this section, we study the impacts of various architectural decisions on model

performance. Table 7.2 reports an ablation analysis conducted on the development

sets of four benchmark datasets (Beauty, Office, Musical Instruments (M-Instr)

and Amazon Instant Video (Inst-Vid)). We report the results of several different

model variations. We first begin describing the default setting in which ablation

reports are deviated from. In the default setting, we use the standard model with

all components (review gates, word-level co-attention, and FM prediction layer).

The Multi-Pointer aggregation is set to use a neural network (single layer nonlinear

transform). The number of layers in the co-attention layer is set to l = 1.

We report the validation results from 8 different variations, with the aims of clearly

showcasing the importance of each component. In (1), we removed the review

gating mechanism. In (2), we replaced the FM with the simple inner product. In (3-

4), we investigated the effects of different pointer aggregation functions. They are

the concatenate and additive operators respectively. In (5-6), we set l = 0 (remove

layer) and l = 2. In (7), we removed the word level co-attention layer. In this case,

the representation for users and items is simply the pointed review embedding. In

(8), we removed the review-level co-attention (RLCA). This variation is no longer

‘hierarchical’, and simply applies word-level co-attention to user and item reviews.

Firstly, we observe the default setting is not universally the best across four

datasets. As mentioned, the review gating mechanism helps in 3 out of 4 pre-

sented datasets. In the Office dataset, removing the review gating layer improves
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Table 7.3: Validation MSE when varying the number of pointers.

Ptr Patio Automotive Sports Video Games
1 0.992 0.842 0.926 1.885
2 0.980 0.855 0.933 1.178
3 0.975 0.843 0.938 1.194
4 0.991 0.844 0.938 1.189
5 0.991 0.844 0.935 1.121

performance. We found this to be true across most datasets, i.e., the review gating

mechanism helps more often than not, but not always. The impact of remov-

ing FM is quite easily noticed, leading to huge performance degradation on the

M-Instr dataset. Deprovement on Inst-Vid and Office is also significant. On

the other hand, removing FM marginally improved performance on Beauty. We

also discovered that there is no straightforward choice of aggregation functions.

Notably, the relative ranking of all three variants (concat, additive, and neural

network) are always interchanging across different datasets. As such, they have to

be tuned. We also noticed that the choice of l = 1 is safe across most datasets,

as increasing or decreasing would often lead to performance degradation. Finally,

removing the WLCA and RLCA consistently lowered performance on all datasets,

which ascertains the effectiveness of the WLCA layer. Notably, removing RLCA

seems to hurt performance more, which signifies that modeling at review-level is

essential.

7.3.5.2 Effect of Number of Pointers

Table 7.3 reports the effect of varying pointers on performance. We use 4 datasets

of varying sizes as an illustrative example (Patio, Automotive, Sports and Video

Games). The datasets shown are sorted from smallest to largest in terms of the

number of interactions. Clearly, we observe that the optimal number of pointers

varies across all datasets. We found this to be true for the remainder datasets that

are not shown. This seems to be more of a domain-dependent setting since we were

not able to find any correlation with dataset size. For most datasets, the optimal

pointers fall in the range of 1−3. In exceptional cases (Video Games), the optimal

number of pointers was 5.
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Table 7.4: Excerpts from the MPCN’s pointer mechanism.

User Review Item Review
game is really beautiful! coolest rpg
ever...

..a gift for a friend who really loves rpg
games. he really loved it!

.. game is completely turned based, so
you have time to ponder you actions..

..is a great and engaging puzzler game
but wasn’t too challenging

just love this little guy ... phone is
reasonably easy to put in and take out

..case really fits the 5s like a glove..

is a nice charger..but after a few
momths it wasn’t charging...

it is clearly a used or refurbished bat-
tery..

cocoa is a wonderful, rich tasting, not
overly sweet product ..

used to eat the dark and milk choco-
late, and then we tried this and can’t
explain how good they are

7.3.6 In-Depth Model Analysis

In this section, we present several insights pertaining to the inner workings of our

proposed model.

7.3.6.1 What are the pointers pointing to?

We list some observations by analyzing the behavior of the MPCN model. Firstly,

we observed that pointers react to aspects and product sub-categories. In many

cases, we observed that the pointer mechanism tries to find the most relevant

review written by the user for a given product. If the target item is a phone

case, then our model tries to find a review written by the user which is directed

towards another phone case product. Intuitively, we believe that this is trying to

solicit the user’s preferences about a type of product. We provide some qualitative

examples in Table 7.4. Consider the context of video games, it finds that the user

has written a review about rpg (roleplaying games). At the same time, it finds

that the item review consists of a (positive) review of the item being a good rpg

game. As a result, it surfaces both reviews and concurrently points to both of

them. This follows suit for the other examples, e.g., it finds a matching clue of

puzzle games (turn-based) in the second example. The last example is taken from

the Gourmet Food dataset. In this case, it discovers that the user likes cocoa, and

concurrently finds out that the product in question has some relevant information

about chocolate.
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Figure 7.3: Visualization of Review-level Co-Attention.

7.3.6.2 Behavior of Multi-Pointer Learning

We study the behavior of our multi-pointer mechanism. First and foremost, this

serves as another sanity check and to observe if multi-pointers are really necessary,

i.e., if pointers are not pointing all to the same reviews. Hence, this section aims to

provide better insight into the inner workings of our proposed model. We trained an

MPCN model with four pointers. A quick observation is that all four pointers point

to different reviews (given the same user-item pair). This is automatic, and does

not require any special optimization constraint (such as explicitly enforcing the

model to choose different reviews through an extra optimization term). Moreover,

we analyze the affinity matrix from the review-level co-attention. Figure 7.3 shows

the affinity matrix for pointers one to four. Matching patterns differ significantly

across multiple calls, hence generating different pointers.

Secondly, it is also intuitive that it is not absolutely necessary for MPCN to always

point to unique reviews given the same user-item pair. We observed a relatively

significant one-to-many pointer pattern on top of the usual one-to-one pattern.

In this case, the same review for user (item) is being matched with n (many)
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Table 7.5: Analysis of multi-pointer behavior of MPCN.

Condition D-Music Apps V-Games Food Yelp17
(1) All unique 85.2% 87.5% 82.0% 99.2% 99.2%
(2) 1 Repeated 13.2% 12.5% 17.2% 0.7% 0.7%

(3) All Repeated 1.6% 0.0% 1.6% 0.0% 0.0%
(4) One-to-Many 64.8% 57.8% 57.8% 23.4% 43.7%

different reviews from the item (user). This is also observed to be dataset/domain

dependent. In a small minority of cases, all pointers pointed to the same reviews

constantly (all repeated condition). However, this is understandable as there is

just insufficient information in the user and item review bank. Additionally, we

analyzed a small sample from the test set, determining if any of the following

conditions hold for each test case.

Table 7.5 reports the percentages of test samples that fall into each category. We

report results on five datasets Digital Music (D-Music), Android Apps (Apps),

Video Games (V-Games), Gourmet Food (Food) and Yelp17. Here, we observe

that pointer behavior is largely influenced by domain. The first three are con-

cerned with electronic domains while the last two are more focused on food (and

restaurants). We clearly observe that Food and Yelp have very similar pointer

behavior. In general, the electronic domains usually make an inference using fewer

subsets of reviews. This is made evident by the high one-to-many ratio which

signifies that there is often one important review written by the user (or item)

that contributes more (and needs to be matched with multiple opposing reviews).

Conversely, the food domains require more evidence across multiple reviews. We

believe this is one of the biggest insights that our work offers, i.e., shedding light on

how evidence aggregation works (and differs across domains) in the review-based

recommendation.

7.4 Summary

In this chapter, we proposed a new state-of-the-art neural model for recommen-

dation with reviews. The proposed Multi-Pointer Co-Attention Networks outper-

forms many strong competitors on 24 benchmark datasets from Amazon and Yelp,
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demonstrating the effectiveness of NLU-based deep learning for recommender sys-

tems. We conduct extensive analysis on the inner workings of our proposed multi-

pointer learning mechanism. By analyzing the pointer behavior across multiple

domains, we conclude that different domains (such as food-related and electronics-

related) have different ‘evidence aggregation’ patterns. The source code for this

chapter can be found at https://github.com/vanzytay/KDD2018_MPCN.

https://github.com/vanzytay/KDD2018_MPCN


Chapter 8

Multi-Granular Sequence

Encoders for Natural Language

Understanding

Natural language understanding (NLU) and Machine Reading Comprehension (MRC)

have been extremely productive areas of research in recent years, giving rise to many

highly advanced neural network architectures [25, 34, 110, 111, 116, 175, 203]. A

common denominator in many of these models is the compositional encoder, i.e.,

usually a bidirectional recurrent-based (LSTM [18] or GRU [19]) encoder that se-

quentially parses the text sequence word-by-word. This helps to model the compo-

sitionality of words, capturing rich and complex linguistic and syntactic structure

in language. In this chapter1, we discuss our proposed Dilated Composition Units

(DCU) for encoding sequences.

8.1 Introduction

While the usage of a recurrent encoder is often regarded as indispensable in highly

complex NLU/MRC tasks, there are still several challenges and problems pertain-

ing to its usage in modern NLU/MRC tasks. Firstly, documents can be extremely

1This chapter is published as Multi-granular Sequence Encoding via Dilated Composition Units
for Reading Comprehension, Proceedings of EMNLP 2018 [67].
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long to the point where running a BiRNN model across a long document is com-

putationally prohibitive. This is aggravated since NLU/MRC tasks can be easily

extended to reasoning over multiple long documents. Secondly, recurrent encoders

have limited access to long-term (far) context since each word is sequentially parsed.

This restricts any form of multi-sentence and intra-document reasoning from hap-

pening within the compositional encoder layer.

To this end, we propose a new compositional encoder (Dilated Composition Units)

that can either be used in place of standard RNN encoders or serve as a new module

that is complementary to existing neural architectures. Our proposed encoder

leverages dilated compositions to model relationships across multiple granularities.

That is, for a given word in the target sequence, our encoder exploits both long-

term (far) and short-term (near) information to decide how much information to

retain for it. Intuitively, this can be interpreted as learning to compose based on

modeling relationships between word-level, phrase-level, sentence-level, paragraph-

level and so on. The output of the dilated composition mechanism acts as gating

functions, which are then used to learn compositional representations of the input

sequence.

A brief high-level overview of our proposed encoder is given as follows: Firstly,

sequences are chunked into blocks based on user-defined (hyperparameter) block

sizes. Block sizes are often dilated in nature, i.e., 1, 2, 4, 10, 25, etc., in order

to capture more long-term (far) information. Our encoder takes the neural bag-

of-words representation of each block size and compresses/folds all words (that

reside in each block) into a single summed embedding. All blocks are then passed

into fully-connected layers and re-expanded/unfolded to their original sequence

lengths. For each word, the gating vectors are then constructed by modeling the

relationships between all blocks that this word resides in. As such, this can be

interpreted as a divide-and-conquer sequence encoding method.

This has several advantages. Firstly, we enable a major speedup by avoiding either

costly step-by-step gate construction while still maintaining interactions between

neighboring words. As such, our model belongs to a class of architectures which

is inspired by QRNNs [204] and SRUs [205]. The key difference is that our gates

are not constructed by convolution layers but explicit block-based matching across

multiple ranges, both long and short. Secondly, modeling at a long-range (e.g., 25

or 50) enables our model to look further ahead as opposed to only one step forward.
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As such, the learned gates possess not only information about nearby words but also

a larger overview of the context. This is in similar spirit to self-attention, albeit

occurring within the encoder. Thirdly, the final gates are formed by modeling

relationships between multi-range projections (n-gram blocks), allowing for fine-

grained intra-document relationships to be captured. Our work is mainly concerned

with designing an efficient encoder that is able to capture not only compositional

information but also long-range and short-range information. More specifically, our

proposed recurrent DCU (Dilated Composition Unit) encoder takes on a similar

architecture to Quasi-Recurrent Neural Networks [204] and Simple Recurrent Units

[205]. In these models, gates are pre-learned and then applied. However, different

from existing models such as QRNNs that use convolution layers as gates, we use

block-based fold-unfold layers for learning gates. Our model also draws inspiration

from dilation, in particular, dilated RNNs [133] and dilated convolutions [206], that

intuitively help to model long-range dependencies. Notably, our work is orthogonal

to recent advances that are targeted at speeding up the reading process. Such

works include residual dilated convolutions [207], self-attention [208] and coarse-

to-fine grained paradigm [209]. However, while speed is one of the clear benefits of

this work, our work is the first to introduce the idea of block-based multi-granular

reasoning. we believe that this new building block is complementary/useful to the

NLU/MRC task in general.

The overall contributions of our work are as follows:

• We propose DCU (Dilated Compositional Units), a new compositional en-

coder for both fast and expressive sequence encoding. we propose an overall

architecture that utilizes DCU within a Bi-Attentive framework for both

multiple choice and span prediction NLU/MRC tasks. DCU can be used as

a standalone (without RNNs) for fast reading and/or together with RNN

models (i.e., DCU-LSTM) for more expressive reading.

• We conduct extensive experiments on three large-scale and challenging NLU/MRC

datasets - RACE [43], SearchQA [48] and NarrativeQA [64]. Our model is

lightweight, fast and efficient, achieving state-of-the-art or highly competitive

performance on three datasets.
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• Despite its simplicity, our model outperforms highly complex models such

as Dynamic Fusion Networks (DFN) [210] on RACE. While DFN takes ap-

proximately a week to train, spending at least several hours per epoch, our

model converges in less than 12 hours with only 4 − 5 minutes per epoch.

Moreover, our model outperforms DFN by 2%−6% on the RACE benchmark

and other strong baselines such as the Gated Attention Reader by 10%. On

RACE, we outperform DFN without any recurrent and convolution layers.

Ablation studies show an improvement of up to 6% when using DCU over a

LSTM/GRU encoder.

8.2 Proposed Method

In this section, we describe our proposed Dilated Compositional Unit (DCU) en-

coder, along with a general Bi-Attention framework that incorporates our DCU

encoders.

8.2.1 Dilated Compositional Units (DCU)

This section introduces our proposed DCU encoders. Figure 8.1 provides an il-

lustration of the overall encoder architecture. It presents a high-level overview of

(1) our proposed DCU encoder (left), (2) Span Prediction Architecture (center)

and (3) Multiple Choice Architecture (right). In the DCU encoder, blocks are

formed at multi-granular levels. A block embedding is learned for each granularity.

The composition gates for each word are constructed by modeling the relationships

between all NBOW (neural bag-of-words) blocks that it resides in.

Dilated Composition Mechanism The inputs to the DCU encoder are (1) a

sequence {w1, w2 · · ·w`}, and (2) list of ranges {r1, r2 · · · rk} where k is the number

of times the fold/unfold operation is executed. The final output of the encoder is

a sequence of vectors which retains the same dimensionality as its inputs.

Fold Operation This section describes the operation for each rj. For each rj

and the input sequence, the fold operation performs the summation of every rj
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Figure 8.1: Architecture of DCU.

word. This is essentially the NBOW (neural bag-of-words) representation.

wt =
a+b∑
n=a

xn (8.1)

where a = t mod rj) and b = rj − (t mod rj). This reduces the overall document

length to `/rj where each item in the sequence is the sum of every rj word. Given

the new sequence of `/rj tokens, we then pass each token into a single layered

feed-forward neural network:

w̄t = σr(Wa(wt)) + ba (8.2)

where Wa ∈ Rd×d and ba ∈ Rd are the parameters of the fold layer. σr is the

ReLU activation function. wt is the t-th token in the sequence.

Unfold Operation Given the transformed tokens w̄1, w̄2 · · · w̄`/rj , we then ex-

pand/unfold them into the original sequence length. Note that for each rj, the

parameters Wa,ba are not shared between blocks. The unfold operator can be

described as:

w̄t = [wt;wt+1; · · ·wt+rj−1] (8.3)
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Figure 8.2: Overview of the Fold-Unfold operation for rj = 2.

where [; ] is the concat operator.

Figure 8.2 depicts the fold/unfold operation for a single value of rj. Overall, the

key intuition of each fold-unfold operation is to learn representations of a block

of a single granularity (say, blocks of 2). The main rationale for unfolding is to

enable reasoning over multiple blocks (or granularities). This is described in the

next section.

Multi-Granular Reasoning From k different calls of the fold/unfold operation

at different block sizes, we pass the concatenated vector of all transformed tokens

into a two layered feed-forward neural network.

gt = F2(F1([w1
t ;w

2
t ; · · ·wkt ])) (8.4)

where F1(.),F2(.) are feed-forward networks with ReLU activations, i.e., σr(Wx +

b). [; ] is the concatenation operator. gt is interpreted as a gating vector learned

from multiple granularities and Equation (8.4) is learning the relationships between

a token’s representation at multiple hierarchies depending on the values of rj.

Notably, it is easy to see that every n pairs of words will have the same gating

vector where n is the lowest value of rj. As such, the value of the unigram, i.e.,

rj = 1 (projection of every single token) is critical as it prevents identical gating

vectors across the sequence.



Chapter 8 Multi-Granular Sequence Encoders 132

8.2.1.1 Encoding Operation

To learn the DCU encoded representation of each word, we consider two variations

of DCU encoders.

Simple Encoding In this variation, we use gt as a gating vector to control the

fine-grained balance between the projection of each word wt in the original input

document and the original representation.

zt = tanh(Wp wt) + bp (8.5)

yt = σ(gt) ∗ wt + (1− σ(gt)) zt (8.6)

where {y1, y2, · · · y`} is the output document representation. σ is the sigmoid func-

tion. Note that this formulation is in similar spirit to highway networks [146].

However, since our gating function is learned via reasoning over multi-granular

sequence blocks, it captures more compositionality and long-range context. Note

that an optional and additional projection may be applied to wt but we found that

it did not yield much empirical benefit.

Recurrent Encoding (DCU cell) In the second variation, we consider a recur-

rent (sequential) variant. This is in similar spirit to QRNNs [204] and SRUs [205]

which reduces computation cost by pre-learning the gating vectors. The following

operations describe the operations of the recurrent DCU cell for each time step t.

ct = gt � ct−1 + (1− gt)� zt (8.7)

ht = ot � ct (8.8)

where ct, ht are the cell and hidden states at time step t. gt are the gates learned

from the output of the multi-range reasoning step. ot is an additional output

gate learned via applying an affine transform on the input vector wt, i.e., ot =

Wo(wt) + bo. Similar to RNNs, the Recurrent DCU parses the input sequence

word-by-word. However, the cost is significantly reduced because we do not have

expensive matrix operations that are executed in an non-parallel fashion. Finally,

the outputs of the DCU encoder are a series of hidden vectors {h1, h2 · · ·h`} for

each word in the sequence.
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8.2.2 Overall Model Architectures

This section describes the overall model architectures that utilize DCU encoders.

In our experiments, we focus on both multiple-choice based (RACE) and span

prediction NLU/MRC tasks (SearchQA, NarrativeQA). Since the core focus of

this work is our encoder, we briefly provide the high-level details of our vanilla

Bi-Attentive model. The Bi-Attentive models that are used in our experiments

act as baselines, often being less complex than current competitive models such as

BiDAF [110], AMANDA [117] or DFN [210]. Figure 8.1 (center and right side of

the figure) provides a high-level illustration of these architectures.

8.2.2.1 Multiple Choice Model

In the Multiple Choice (MCQ) Model, there are three types of input sequences,

namely Passage (P ), Question (Q) and Answers (Aj). The output of the model

(for each answer), is a score s(P,Q,Aj) ∈ [0, 1] denoting the strength of Aj.

Input Encoding Each input sequence is passed into first a projection layer. To

enhance the input word representations, we also include the standard EM (exact

match) binary feature to each word. In this case, we use a three-way EM adap-

tation, i.e., EM(P,Q), EM(Q,A) and EM(P,A). The projected embeddings are

then passed into a single-layered highway network.

Compositional Encoder In our experiments, we vary the encoder in this layer.

Typical choices of encoders in this layer are LSTMs or GRUs. we vary this in our

experiments in order to benchmark the effectiveness of our proposed DCU encoder.

The output of this layer has the same dimensions as its inputs (typically the hidden

states of a RNN model).

Bi-Attention Layer This layer models the interactions between P,Q and A.

Let B(.) be a standard bidirectional attention that utilizes mean-pooling aggrega-

tion. The scoring function is the bilinear product of the nonlinearly transformed

input, i.e., F (x)>i MF (y)i. We first apply B(P,Q) to form bi-attentive P q, Qp rep-

resentations. Subsequently, we apply B(P q, Aj) to learn a vector representation
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for each answer. A temporal sum pooling is applied on the outputs of P qa, Apj and

concatenated to form afj ∈ R2d.

Answer Selection Let {a1, a2 · · · aNa} be the inputs to this layer and Na is the

number of answer candidates. Motivated by the work in retrieval-based QA [3],

we include word overlap features to each answer candidate. This word overlap

feature is in similar spirit to the EM feature. Each overlap operation between two

sequences returns four features. We convert each answer vector aj into a scalar

via afj = Softmax(W2(σr(W1([aj]) + b1) + b2)) where W∗, b∗ and ∗ = {1, 2} are

standard dense layer parameters.

Optimization The MCQ-based model minimizes the multi-class cross entropy

where the number of classes corresponds to the number of choices.

8.2.2.2 Span Prediction Model

In this model, the goal is to extract or predict a span s (start),e (end) where P [s : e]

is the answer to the query. As such, the key interaction in this architecture is

between P and Q. For most part, the model architecture remains similar especially

for the input encoding layer and compositional encoder layer. The key difference

is that we reduce the number of input sequence from three to two.

Input Encoding This follows the same design as the MCQ-based model, albeit

for two sequences instead of three. Similarly, the two-way EM feature is added

before passing into the highway layer.

Compositional Encoder This layer remains identical to the MCQ-based model.

Bi-Attention Layer We adopt a different bi-attention function for span predic-

tion. More specifically, we use the ‘SubMultNN’ or the ‘Mult’ adaptation from [79]

(which is tuned) and compare aligned sequences between P and Q to form P q, the

query-dependent passage representation.
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Answer Pointer Layer In this layer, we pass P q through a two layered com-

positional encoder (which is varied similar to the compositional encoder layer and

will be further elaborated in our experiments). The start pointer and end pointer

are determined by F (H1), F (H2) where H1, H2 are the hidden outputs from the

first and second encoders respectively. F (.) is a linear transform, projecting each

hidden state to a scalar. We pass both of them into softmax functions to obtain

probability distributions.

Optimization Following [34, 110], we minimize the joint cross entropy loss of

the start and end probability distributions. During inference, we follow [34] to find

the best answer span.

8.3 Experiments

In this section, we report our experimental results and comparisons against other

published works.

8.3.1 Datasets

For our experiments, we use one challenging multiple choice MRC dataset and two

span-prediction MRC datasets.

RACE (Reading Comprehension from Examinations) [43] This is a recently pro-

posed dataset that is constructed from real-world examinations. Given a passage,

there are several questions with four options each. The authors argue that RACE

is more challenging compared to popular benchmarks (e.g., SQuAD [1]) as more

multi-sentence and compositional reasoning are required. There are two subsets of

RACE, namely RACE-M (Middle school) and RACE-H (High school). The latter

is considered to be harder than the former.

SearchQA [48] This dataset was discussed earlier in Chapter 5, which is a recent

dataset that emulates a real-world QA system. It involves extracting passages from
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search engine results and requiring models to answer questions by reasoning and

reading these search snippets.

NarrativeQA [64] This dataset was discussed earlier in Chapter 5, which is a

recent benchmark proposed for story-based reading comprehension. Different from

many NLU/RC datasets, the answers are handwritten by human annotators. We

focus on the summaries setting instead of reading full stories since our model is

targetted at standard NLU/RC tasks.

MCQ datasets are evaluated using the standard accuracy metric. For RACE, we

train models on the entire dataset, i.e., both RACE-M and RACE-H, and evaluate

them separately. Moreover, the model selection is also based on each subset’s

respective development set. For SearchQA, we follow [48, 117] which evaluates

unigram exact match (EM) and n-gram F1 scores. For NarrativeQA, since the

answers are human written and not constrained to a span that can be found in

the passage, the evaluation metrics are BLEU-1, BLEU-4, Meteor and Rouge-L

following [64].

8.3.2 Compared Methods

We describe the key competitors on each dataset.

RACE The key competitors are the Stanford Attention Reader (Stanford AR)

[211], Gated Attention Reader (GA) [212], and Dynamic Fusion Networks (DFN)

[210]. GA incorporates a multi-hop attention mechanism that helps to refine the

answer representations. DFN is an extremely complex model. It uses (1) BiMPM’s

matching functions [80] for extensive matching between Q,P and A, (2) multi-hop

reasoning powered by ReasoNet [25] and (3) reinforcement learning techniques

for dynamic strategy selection. A leaderboard for this dataset is maintained at

http://www.qizhexie.com/data/RACE_leaderboard.

SearchQA The main competitor baseline is the AMANDA model proposed in

[117]. AMANDA uses a multi-factor self-attention module, along with a question

focused span prediction. AMANDA also uses BiLSTM layers for input encoding

http://www.qizhexie.com/data/RACE_leaderboard
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and at the span prediction layers. We also compare against the reported ASR [177]

baselines which were reported in [48].

NarrativeQA On this benchmark, we compare with the reported baselines in

[64]. We compete on the summaries setting, in which the baselines are a context-less

sequence to sequence (seq2seq) model, namely ASR [177] and BiDAF [110]. We also

benchmark a stronger competitor, namely R-NET [113] on this benchmark. We

use the open source implementation at https://github.com/HKUST-KnowComp/

R-Net.

Our Methods Across our experiments, we benchmark several variants of our

proposed DCU. The first is denoted as Sim-DCU which corresponds to the Simple

DCU model described earlier. The model denoted by DCU (without any prefix)

corresponds to the recurrent DCU model. Finally, the final variant is the DCU-

LSTM which places a DCU encoder layer on top of a BiLSTM layer. We report

the dimensions of the encoder as well as training time (per epoch) for each variant.

The encompassing framework for DCU is the Bi-Attentive models described for

MCQ-based problems and span prediction problems. Unless stated otherwise, the

encoder in the pointer layer for span prediction models also uses DCU. However,

for the Hybrid DCU-LSTM models, answer pointer layers use BiLSTMs. For the

RACE dataset, we additionally report scores of an ensemble of nine Sim-DCU

models. This is to facilitate comparison against ensemble models of [210]. We tune

the dimensionality of the DCU cell within a range of 100 − 300 in denominations

of 50. The results reported are the best performing models on the held-out set.

8.3.3 Implementation Details

We implement all models in TensorFlow [152]. Word embeddings are initialized

with 300d GloVe [16] vectors and are not fine-tuned during training. Dropout rate

is tuned amongst {0.1, 0.2, 0.3} on all layers including the embedding layer. For

our DCU model, we use range values of {1, 2, 4, 10, 25}. DCU encoders are only

applied on the passage and not the query. We adopt the Adam optimizer [153]

with a learning rate of 0.0003/0.001/0.001 for RACE/SearchQA/NarrativeQA re-

spectively. The batch size is set to 64/256/32 accordingly. The maximum sequence

https://github.com/HKUST-KnowComp/R-Net
https://github.com/HKUST-KnowComp/R-Net
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Table 8.1: Results on RACE dataset.

Model RACE-M RACE-H RACE Time
Sliding Window [43] 37.3 30.4 32.2 N/A
Stanford AR [211] 44.2 43.0 43.3 N/A
GA [212] 43.7 44.2 44.1 N/A
ElimiNet [213] N/A N/A 44.5 N/A
Dynamic Fusion Network [210] 51.5 45.7 47.4 ≈8 hours (1 week∗)
Bi-Attention (No Encoder) 50.6 44.0 44.9 3 min (9 hours)
Bi-Attention (250d GRU) 48.5 42.1 44.0 16 min (2 days)
Bi-Attention (250d LSTM) 50.3 40.9 43.6 18 min (2 days)
Bi-Attention (250d Sim-DCU) 57.7 47.4 50.4 4 min (12 hours)
Bi-Attention (250d DCU) 56.1 47.5 50.0 12 min (20 hours)
GA + ElimiNet [213] N/A N/A 47.2 N/A
DFN† (x9) [210] 55.6 49.4 51.2 N/A
Bi-Attention (S-DCU)† (x9) 60.2 50.3 53.3 N/A

lengths are 500/200/1100 respectively. For NarrativeQA, we use the Rouge-L score

to find the best approximate answer relative to the human written answer for train-

ing the span model. All models are trained and all runtime benchmarks are based

on a TitanXP GPU.

8.3.4 Experimental Results on RACE

Table 8.1 reports our results on the RACE benchmark dataset. Competitor results

are reported from [43, 210]. The best result for each category (single and ensemble)

is in boldface. The last column reports estimated training time per epoch and total

time for convergence. ∗ is an estimated value that we obtain from the authors.

Our proposed DCU model achieves the best result for both single models and

ensemble models. We outperform highly complex models such as DFN. We also

pull ahead of other recent baselines such as ElimiNet [213] and GA by at least

5%. The best single model score from RACE-H and RACE-M alternates between

Sim-DCU and DCU. Overall, there is a 6% improvement on the RACE-H dataset

and 1.8% improvement on the RACE-M dataset. Our Sim-DCU model also runs

at 4 minutes per iteration, which is dramatically faster and simpler than DFN or

other recurrent models. We believe that this finding highlights the importance of

designing strong and fast baselines for the task at hand.
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Table 8.2: Results on SearchQA dataset.

Dev Test
Model Acc F1 Acc F1 Time
TF-IDF max [48] 13.0 N/A 12.7 N/A N/A
ASR [177] 43.9 24.2 41.3 22.8 N/A
AMANDA [117] 48.6 57.7 46.8 56.6 ≈8∗ min
Bi-Attention† (No Encoder) 12.4 20.2 18.9 12.3 ≈17 sec
Bi-Attention† (150d BiLSTM) 40.0 51.3 38.6 49.0 ≈7 min
Bi-Attention† (300d LSTM) 40.3 48.7 38.2 46.4 ≈6 min
s heightBi-Attention† (300d Sim-DCU) 44.1 45.5 42.9 43.1 ≈25 sec
Bi-Attention† (300d DCU) 48.6 54.8 46.8 53.3 ≈2 min
Bi-Attention (200d Hybrid DCU-LSTM) 50.5 59.9 49.4 59.5 ≈7 min

In general, we also found that the usage of a recurrent cell is not really crucial

on this dataset since (1) Sim-DCU and DCU can achieve comparable performance

to each other, (2) GRU and LSTM models do not have a competitive edge and

(3) using no encoder can achieve comparable performance to DFN. Finally, an

ensemble of Sim-DCU models achieve state-of-the-art performance on the RACE

dataset, achieving an overall score of 53.3%.

8.3.5 Experimental Results on SearchQA

Table 8.2 reports our results on the SearchQA dataset. Unigram Accuracy and

n-gram F1 are reported following [117]. All models with † use the same encoder

in the answer pointer layer. ∗ is an estimate running a replicated model with the

same batch size (b = 256) as our models. We draw the reader’s attention to the

performance of the 300dDCU encoder. We achieve the same accuracy as AMANDA

without using any LSTM or GRU encoder. This model runs at 2 minutes per epoch,

making it 4 times more efficient than AMANDA (estimated, with identical batch

size). While AMANDA also uses multi-factor self-attention, along with character

enhanced representations, our simple DCU encoder used within a mere baseline bi-

attentive framework comes close in performance. Finally, the hybrid combination,

DCU-LSTM significantly outperforms AMANDA by 3%.

Contrary to MCQ-based datasets, we found that the Sim-DCU model could not

achieve comparable results to the recurrent DCU. We hypothesize that this is due

to the need to predict spans. Nevertheless, the 300d DCU outperforms an LSTM

encoder and remains competitive to a BiLSTM of similar dimensionality. In terms
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Table 8.3: Results on NarrativeQA dataset.

Model BLEU-1 BLEU-4 Meteor Rouge-L Time
Seq2Seq† 15.89 1.26 4.08 13.15 N/A
ASR† [177] 23.20 6.39 7.77 22.26 N/A
BiDAF† [110] 33.72 15.53 15.38 36.30 N/A
R-NETφ [113] 34.90 20.30 18.00 36.70 N/A
Bi-Attention (300d LSTM) 31.18 15.34 14.42 32.95 ≈1 hr
Bi-Attention (150d BiLSTM) 34.22 18.22 16.19 38.32 ≈1 hr
Bi-Attention (300d Sim-DCU) 9.15 1.69 3.95 11.16 1 min
Bi-Attention (300d DCU) 33.28 16.15 15.84 36.65 18 min
Bi-Attention (150d DCU-LSTM) 36.55 19.79 17.87 41.44 ≈1 hr

of representation and parameter size, we consider a 150d BiLSTM to be equivalent

to a 300d LSTM for a fair comparison. We also observe that LSTM and DCU are

complementary. This shows that stacking a DCU encoder over standard LSTMs

can give a performance boost relative to using each encoder separately.

8.3.6 Experimental Results on NarrativeQA

Table 8.3 reports our results on the NarrativeQA benchmark [64]. The baselines

marked with † are baselines reported by [64] using the summaries setting. The

baseline marked with φ was obtained by running an open-source implementation

of R-NET on the benchmark.

First, we observe that 300d DCU can achieve comparable performance with BiDAF

[110]. When compared with a BiLSTM of equal output dimensions (150d), we

find that our DCU model performs competitively, with less than 1% deprovement

across all metrics. However, the time cost required is significantly reduced. The

performance of our model is significantly better than 300d LSTM model while

also being significantly faster. Here, we note that Sim-DCU does not produce

reasonable results at all, which seems to be in a similar vein to results on SearchQA,

i.e., a recursive cell that processes word-by-word is mandatory for span prediction.

However, our results show that it is not necessary to construct gates in a word-by-

word fashion. Finally, DCU-LSTM significantly outperforms all models in terms

of ROUGE-L, including BiDAF on this dataset. Performance improvement over

the vanilla BiLSTM model ranges from 1%−3% across all metrics, suggesting that

DCU encoders are also effective as a complementary neural building block.
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8.4 Summary

We proposed a novel neural architecture, the DCU encoder and an overall bi-

attentive model for both MCQ-based and span prediction MRC tasks. We apply

it to three MRC datasets and achieve competitive performance on all without

the use of recurrent and convolution layers. Our proposed method outperforms

DFN, an extremely complex model, without using any LSTM/GRU layer. We also

remain competitive to AMANDA and BiDAF without any LSTM/GRU. While our

proposed encoder demonstrates promise on reasoning and understanding natural

language, we believe that our encoder is generalizable to other domains beyond

reading comprehension. However, we defer this prospect to future work. The

source code can be found at https://github.com/vanzytay/EMNLP18_DCU.

https://github.com/vanzytay/EMNLP18_DCU


Chapter 9

Recurrently Controlled Recurrent

Networks for Natural Language

Understanding

Recurrent neural networks (RNNs) live at the heart of many sequence modeling

problems. Designing powerful inductive biases for modeling sequences lies at the

core of language processing research. RNNs are ubiquitous in NLU applications,

which warrants investigation along this line. This chapter1 presents a new recurrent

architecture that demonstrates highly effective performance on a wide spectrum of

NLP and NLU tasks.

9.1 Introduction

Within the core of RNNs, the incorporation of gated additive recurrent connections

is extremely powerful, leading to the pervasive adoption of models such as Gated

Recurrent Units (GRU) [19] or Long Short-Term Memory (LSTM) [18] across many

NLP/NLU applications [22, 23, 85, 111]. In these models, the key idea is that the

gating functions control information flow and compositionality over time, deciding

how much information to read/write across time steps. This not only serves as a

1This chapter is published as Recurrently Controlled Recurrent Networks, Proceedings of
NeurIPS 2018 [68].
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protection against vanishing/exploding gradients but also enables greater relative

ease in modeling long-range dependencies.

There are two common ways to increase the representation capability of RNNs.

Firstly, the number of hidden dimensions could be increased. Secondly, recurrent

layers could be stacked on top of each other in a hierarchical fashion [214], with

each layer’s input being the output of the previous, enabling hierarchical features

to be captured. Notably, the wide adoption of stacked architectures across many

applications [113, 154, 215, 216] signify the need for designing complex and expres-

sive encoders. Unfortunately, these strategies may face limitations. For example,

the former might run a risk of overfitting and/or hitting a wall in performance.

On the other hand, the latter might be faced with the inherent difficulties of going

deep such as vanishing gradients or difficulty in feature propagation across deep

RNN layers [217].

In recent years, many RNN variants have been proposed, ranging from multi-

scale models [133, 218, 219] to tree-structured encoders [83, 220]. Models that

are targetted at improving the internals of the RNN cell have also been proposed

[132, 221]. Given the importance of sequence encoding in NLP, the design of

effective RNN units for this purpose remains an active area of research.

Stacking RNN layers is the most common way to improve representation power.

This has been used in many highly performant models ranging from speech recog-

nition [215] to machine reading [113]. The BCN model [85] similarly uses multiple

BiLSTM layers within their architecture. Models that use shortcut/residual con-

nections in conjunction with stacked RNN layers are also notable [154, 173, 217,

222].

Notably, a recently emerging trend is to model sequences without recurrence. This

is primarily motivated by the fact that recurrence is an inherent prohibitor of par-

allelism. To this end, many works have explored the possibility of using attention

as a replacement for recurrence. In particular, self-attention [24] has been a popu-

lar choice. This has sparked many innovations, including general purpose encoders

such as DiSAN [223] and Block Bi-DiSAN [224]. The key idea in these works

is to use multi-headed self-attention and positional encodings to model temporal

information.
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While attention-only models may come close in performance, some domains may

still require the complex and expressive recurrent encoders. Moreover, we note

that in [223, 224], the scores on multiple benchmarks (e.g., SST, TREC, SNLI,

MultiNLI) do not outperform (or even approach) the state-of-the-art, most of which

are models that still heavily rely on bidirectional LSTMs [83, 85, 154, 225]. While

self-attentive RNN-less encoders have recently been popular, our work moves in

an orthogonal and possibly complementary direction, advocating a stronger RNN

unit for sequence encoding instead. Nevertheless, it is also good to note that our

RCRN model outperforms DiSAN in all our experiments.

Another line of work is also concerned with eliminating recurrence. SRUs (Simple

Recurrent Units) [205] are recently proposed networks that remove the sequential

dependencies in RNNs. SRUs can be considered as a special case of Quasi-RNNs

[204], which performs incremental pooling using pre-learned convolutional gates.

Zhang et al. [226] proposed sentence-state LSTMs (S-LSTM) that exchanges in-

cremental reading for a single global state.

This chapter proposes Recurrently Controlled Recurrent Networks (RCRN), a new

recurrent architecture and a general purpose neural building block for sequence

modeling. RCRN proposes a new way of enhancing the representation capability

of RNNs without going deep. For the first time, we propose a controller-listener

architecture that uses one recurrent unit to control another recurrent unit. RCRNs

are characterized by its usage of two key components - a recurrent controller cell

and a listener cell. The controller cell controls the information flow and compo-

sitionality of the listener RNN. The key motivation behind RCRN is to provide

expressive and powerful sequence encoding. However, unlike stacked architectures,

all RNN layers operate jointly on the same hierarchical level, effectively avoiding

the need to go deeper. Therefore, RCRNs provide a new alternative way of utilizing

multiple RNN layers in conjunction by allowing one RNN to control another RNN.

As such, our key aim in this work is to show that our proposed controller-listener

architecture is a viable replacement for the widely adopted stacked recurrent ar-

chitecture.

To demonstrate the effectiveness of our proposed RCRN model, we conduct ex-

tensive experiments on a plethora of diverse NLP tasks where sequence encoders

such as LSTMs/GRUs are highly essential. These tasks include sentiment analysis
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Figure 9.1: Architecture of RCRN.

(SST, IMDb, Amazon Reviews), question classification (TREC), entailment classi-

fication (SNLI, SciTail), answer retrieval (WikiQA, TrecQA) and machine reading

comprehension (NarrativeQA). Experimental results show that RCRN outperforms

BiLSTMs and multi-layered/stacked BiLSTMs on all 26 datasets, suggesting that

RCRNs are viable replacements for the widely adopted stacked recurrent archi-

tectures. Additionally, RCRN achieves close to state-of-the-art performance on

several datasets.

9.2 Proposed Method

This section formally introduces the RCRN architecture. Our model is split into

two main components - a controller cell and a listener cell. Figure 9.1 illustrates

the model architecture.

9.2.1 Controller Cell

The goal of the controller cell is to learn gating functions in order to influence

the target cell. In order to control the target cell, the controller cell constructs a

forget gate and an output gate which are then used to influence the information

flow of the listener cell. For each gate (output and forget), we use a separate RNN

cell. As such, the controller cell comprises two cell states and an additional set of
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parameters. The equations of the controller cell are defined as follows:
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where xt is the input to the model at time step t. W k
∗ , U

k
∗ , b

k
∗ are the parameters of

the model where k = {1, 2} and ∗ = {i, f, o}. σs is the sigmoid function and σ is the

tanh nonlinearity. � is the Hadamard product. The controller RNN has two cell

states denoted as c1 and c2 respectively. h1
t , h

2
t are the outputs of the unidirectional

controller cell at time step t. Next, we consider a bidirectional adaptation of the

controller cell. Let Equation (9.1) to Equation (9.6) be represented by the function

CT(), the bidirectional adaptation is represented as:
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The outputs of the bidirectional controller cell are h1
t , h

2
t for time step t. These

hidden outputs act as gates for the listener cell.

9.2.2 Listener Cell

The listener cell is another recurrent cell. The final output of the RCRN is gen-

erated by the listener cell which is being influenced by the controller cell. First,

the listener cell uses a base recurrent model to process the sequence input. The
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equations of this base recurrent model are defined as follows:
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Similarly, a bidirectional adaptation is used, obtaining h3
t = [

−→
h3
t ,
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h3
t ]. Next, using

h1
t , h

2
t (outputs of the controller cell), we define another recurrent operation as

follows:
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where cjt , h
j
t and j = {3, 4} are the cell and hidden states at time step t. W 3

∗ , U
3
∗

are the parameters of the listener cell where ∗ = {i, f, o}. Note that h1
t and h2

t are

the outputs of the controller cell. In this formulation, σs(h
1
t ) acts as the forget gate

for the listener cell. Likewise σs(h
2
t ) acts as the output gate for the listener.

9.2.3 Overall RCRN Architecture, Variants and Implemen-

tation

Intuitively, the overall architecture of the RCRN model can be explained as follows:

Firstly, the controller cell can be thought of as two BiRNN models which hidden

states are used as the forget and output gates for another recurrent model, i.e., the

listener. The listener uses a single BiRNN model for sequence encoding and then

allows this representation to be altered by listening to the controller. An alternative

interpretation to our model architecture is that it is essentially a ‘recurrent-over-

recurrent’ model. Clearly, the formulation we have used above uses BiLSTMs as

the atomic building block for RCRN. Hence, we note that it is also possible to have

a simplified variant of RCRN that uses GRUs as the atomic block which we found

to have performed slightly better on certain datasets.
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Cuda-level Optimization For efficiency purposes, we use the cuDNN opti-

mized version of the base recurrent unit (LSTMs/GRUs). Additionally, note that

the final recurrent cell (Equation (9.15)) can be subject to cuda-level optimization

following simple recurrent units (SRU) [205]. The key idea is that this operation

can be performed along the dimension axis, enabling greater parallelization on the

GPU [205]. Note that this form of cuda-level optimization was also performed

in the Quasi-RNN model [204], which effectively subsumes the SRU model. We

adapt the cuda kernel as a custom Tensorflow op in our experiments. While the

authors of SRU release their cuda-op at https://github.com/taolei87/sru, we

use a third-party open-source Tensorflow version which can be found at https:

//github.com/JonathanRaiman/tensorflow_qrnn.git.

On Parameter Cost and Memory Efficency Note that a single RCRN model

is equivalent to a stacked BiLSTM of 3 layers. This is clear when we consider how

two controller BiRNNs are used to control a single listener BiRNN. As such, for

our experiments, when considering only the encoder and keeping all other com-

ponents constant, 3L-BiLSTM has equal parameters to RCRN while RCRN and

3L-BiLSTM are approximately three times larger than BiLSTM.

9.3 Experiments

This section discusses the overall empirical evaluation of our proposed RCRN

model.

9.3.1 Tasks and Datasets

In order to verify the effectiveness of our proposed RCRN architecture, we conduct

extensive experiments across several tasks in the NLP/NLU domain.

Sentiment Analysis Sentiment analysis is a text classification problem in which

the goal is to determine the polarity of a given sentence/document. We conduct

experiments on both sentence and document levels. More concretely, we use 16

https://github.com/taolei87/sru
https://github.com/JonathanRaiman/tensorflow_qrnn.git
https://github.com/JonathanRaiman/tensorflow_qrnn.git
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Amazon review datasets from [227], the well-established Stanford Sentiment Tree-

Bank (SST-5/SST-2) [228] and the IMDb Sentiment dataset [229]. All tasks are

binary classification tasks with the exception of SST-5. The metric is the accuracy

score.

Question Classification The goal of this task is to classify questions into fine-

grained categories such as number or location. We use the TREC question classi-

fication dataset [230]. The metric is the accuracy score.

Entailment Classification This is a well-established and popular task in the

field of natural language understanding and inference. Given two sentences s1 and

s2, the goal is to determine if s2 entails or contradicts s1. We use two popular

benchmark datasets, i.e., the Stanford Natural Language Inference (SNLI) corpus

[45], and SciTail (Science Entailment) [84] datasets (discussed in Chapter 3). This

is a pairwise classification problem in which the metric is also the accuracy score.

Answer Retrieval This is a standard problem in information retrieval and

learning-to-rank. Given a question, the task at hand is to rank candidate an-

swers. We use the popular WikiQA [231] and TrecQA [232] (discussed in Chapter

4) datasets. For TrecQA, we use the cleaned setting as denoted by [167]. The

evaluation metrics are the MAP (Mean Average Precision) and Mean Reciprocal

Rank (MRR) ranking metrics.

Machine Reading Comprehension This task involves reading documents and

answering questions about these documents. We use the recent NarrativeQA [64]

dataset (discussed in Chapter 5) which involves reasoning and answering questions

over story summaries. We follow the original paper and reported scores on BLEU-1,

BLEU-4, Meteor, and Rouge-L.

9.3.2 Task-Specific Model Architectures and Implementa-

tion Details

In this section, we describe the task-specific model architectures for each task.
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Classification Model This architecture is used for all text classification tasks

(sentiment analysis and question classification datasets). We use 300D GloVe [16]

vectors with 600D CoVe [85] vectors as pretrained embedding vectors. An optional

character-level word representation is also added (constructed with a standard

BiGRU model). The output of the embedding layer is passed into the RCRN model

directly without using any projection layer. Word embeddings are not updated

during training. Given the hidden output states of the 200d dimensional RCRN

cell, we take the concatenation of the max, mean and min pooling of all hidden

states to form the final feature vector. This feature vector is passed into a single

dense layer with ReLU activations of 200d dimensions. The output of this layer is

then passed into a softmax layer for classification. This model optimizes the cross

entropy loss. We train this model using Adam optimizer [153] and learning rate is

tuned amongst {0.001, 0.0003, 0.0004}.

Entailment Model This architecture is used for entailment tasks. This is a

pairwise classification models with two input sequences. Similar to the singleton

classsification model, we utilize the identical input encoder (GloVe, CoVE and

character RNN) but include an additional part-of-speech (POS tag) embedding. we

pass the input representation into a two layer highway network [146] of 300 hidden

dimensions before passing into the RCRN encoder. The feature representation of

s1 and s2 is the concatentation of the max and mean pooling of the RCRN hidden

outputs. To compare s1 and s2, we pass [s1, s2, s1 � s2, s1 − s2] into a two layer

highway network. This output is then passed into a softmax layer for classification.

We train this model using Adam optimizer and learning rate is tuned amongst

{0.001, 0.0003, 0.0004}. We mainly focus on the encoder-only setting which does

not allow cross sentence attention. This is a commonly tested setting on the SNLI

dataset.

Ranking Model This architecture is used for the ranking tasks (i.e., answer

retrieval). We use the model architecture from Attentive Pooling BiLSTMs (AP-

BiLSTM) [100] as our base and swap the RNN encoder with our RCRN encoder.

The dimensionality is set to 200. The similarity scoring function is the cosine

similarity and the objective function is the pairwise hinge loss with a margin of

0.1. We use negative sampling of n = 6 to train our model. We train our model

using Adadelta [181] with a learning rate of 0.2.
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Table 9.1: Results on Amazon Reviews dataset for sentiment analysis.

Dataset BiLSTM 2L-BiLSTM SLSTM BiLSTM† 3L-BiLSTM† RCRN
Camera 87.1 88.1 90.0 87.3 89.7 90.5
Video 84.7 85.2 86.8 87.5 87.8 88.5
Health 85.5 85.9 86.5 85.5 89.0 90.5
Music 78.7 80.5 82.0 83.5 85.7 86.0
Kitchen 82.2 83.8 84.5 81.7 84.5 86.0
DVD 83.7 84.8 85.5 84.0 86.0 86.8
Toys 85.7 85.8 85.3 87.5 90.5 90.8
Baby 84.5 85.5 86.3 85.0 88.5 89.0
Books 82.1 82.8 83.4 86.0 87.2 88.0
IMDB 86.0 86.6 87.2 86.5 88.0 89.8
MR 75.7 76.0 76.2 77.7 77.7 79.0
Apparel 86.1 86.4 85.8 88.0 89.2 90.5
Magazines 92.6 92.9 93.8 93.7 92.5 94.8
Electronics 82.5 82.3 83.3 83.5 87.0 89.0
Sports 84.0 84.8 85.8 85.5 86.5 88.0
Software 86.7 87.0 87.8 88.5 90.3 90.8
Macro Avg 84.3 84.9 85.6 85.7 87.5 88.6

Machine Reading Comprehension Model We use R-NET [113] as the base

model. Since R-NET uses three Bidirectional GRU layers as the encoder, we re-

placed this stacked BiGRU layer with RCRN. For fairness, we use the GRU variant

of RCRN instead. The dimensionality of the encoder is set to 75. We train both

models using Adam optimizer with a learning rate of 0.001.

For all datasets, we include additional ablative baselines, swapping the RCRN with

(1) a standard BiLSTM model and (2) a stacked BiLSTM of 3 layers (3L-BiLSTM).

This is to fairly observe the impact of different encoder models based on the same

overall model framework.

9.3.3 Performance Results

This section discusses the overall results of our experiments.

Sentiment Analysis On the 16 review datasets (Table 9.1) from [226, 227],

our proposed RCRN architecture achieves the highest score on all 16 datasets,

outperforming the existing state-of-the-art model - sentence state LSTMs (SLSTM)



Chapter 9 Recurrently Controlled Recurrent Networks 152

Table 9.2: Results on SST-5 dataset for sentiment analysis.

Model/Reference Acc
MVN [233] 51.5
DiSAN [223] 51.7
DMN [234] 52.1
LSTM-CNN [225] 52.4
NTI [156] 53.1
BCN [85] 53.7
BCN + ELMo [17] 54.7
BiLSTM 51.3
3L-BiLSTM 52.6
RCRN 54.3

Table 9.3: Results on SST-2 dataset for sentiment analysis.

Model/Reference Acc
P-LSTM [235] 89.2
CT-LSTM [236] 89.4
TE-LSTM [237] 89.6
NSE [238] 89.7
BCN [85] 90.3
BMLSTM [239] 91.8
BiLSTM 89.7
3L-BiLSTM 90.0
RCRN 90.6

Table 9.4: Results on IMDb dataset for sentiment analysis.

Model/Reference Acc
Res. BiLSTM [222] 90.1
4L-QRNN [204] 91.4
BCN [85] 91.8
oh-LSTM [240] 91.9
TRNN [241] 93.8
Virtual [242] 94.1
BiLSTM 90.9
3L-BiLSTM 91.8
RCRN 92.8
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Table 9.5: Results on TREC dataset for question classification.

Model/Reference Acc
CNN-MC [57] 92.2
SRU [205] 93.9
DSCNN [243] 95.4
DC-BiLSTM [173] 95.6
BCN [85] 95.8
LSTM-CNN [225] 96.1
BiLSTM 95.8
3L BiLSTM 95.4
RCRN 96.2

[226]. The macro average performance gain over BiLSTMs (+4%) and Stacked

(2 X BiLSTM) (+3.4%) is also notable. On the same architecture, our RCRN

outperforms ablative baselines BiLSTM by +2.9% and 3L-BiLSTM by +1.1% on

average across 16 datasets. Note that on Table 9.1, baselines marked with † are

models implemented by us.

Results on SST-5 (Table 9.2) and SST-2 (Table 9.3) are also promising. More

concretely, our RCRN architecture achieves state-of-the-art results on SST-5 and

SST-2. RCRN also outperforms many strong baselines such as DiSAN [223], a

self-attentive model and Bi-Attentive classification network (BCN) [85] that also

use CoVE vectors. On SST-2, strong baselines such as Neural Semantic Encoders

[238] and similarly the BCN model are also outperformed by our RCRN model.

Finally, on the IMDb sentiment classification dataset (Table 9.4), RCRN achieved

92.8% accuracy. Our proposed RCRN outperforms Residual BiLSTMs [222], 4-

layered Quasi Recurrent Neural Networks (QRNN) [204] and the BCN model which

can be considered to be very competitive baselines. RCRN also outperforms abla-

tive baselines BiLSTM (+1.9%) and 3L-BiLSTM (+1%).

Question Classification Our results on the TREC question classification dataset

(Table 9.5) is also promising. RCRN achieved a state-of-the-art score of 96.2% on

this dataset. A notable baseline is the Densely Connected BiLSTM [173], a deep

residual stacked BiLSTM model which RCRN outperforms (+0.6%). Our model

also outperforms BCN (+0.4%) and SRU (+2.3%). Our ablative BiLSTM baselines

achieve a reasonably high score, possibly due to CoVE Embeddings [85]. However,

our RCRN can further increase the performance score.
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Table 9.6: Results on SNLI dataset for entailment classification.

Model/Reference Acc
Multi-head [24] 84.2
Att. Bi-SRU [205] 84.8
DiSAN [223] 85.6
Shortcut [154] 85.7
Gumbel LSTM [83] 86.0
Dynamic Meta Emb [244] 86.7
BiLSTM 85.5
3L-BiLSTM 85.1
RCRN 85.8

Table 9.7: Results on SciTail dataset for entailment classification.

Model/Reference Acc
ESIM [76] 70.6
DecompAtt [21] 72.3
DGEM [84] 77.3
CAFE [174] 83.3
CSRAN [60] 86.7
OpenAI GPT [15] 88.3
BiLSTM 80.1
3L-BiLSTM 79.6
RCRN 81.1

Entailment Classification Results on entailment classification are also opti-

mistic. On SNLI (Table 9.6), RCRN achieves 85.8% accuracy, which is competitive

to Gumbel LSTM. However, RCRN outperforms a wide range of baselines, includ-

ing self-attention based models such as multi-head [24] and DiSAN [223]. There

is also a performance gain of +1% over Bi-SRU even though our model does not

use attention at all. RCRN also outperforms shortcut stacked encoders, which use

a series of BiLSTM connected by shortcut layers. Additionally, we experimented

with adding cross sentence attention, in particular adding the attention of [21]

on 3L-BiLSTM and RCRN. We found that they performed comparably (both at

≈ 87.0). We did not have resources to experiment further even though intuitively

incorporating different/newer variants of attention [60, 76, 245] and/or ELMo [17]

can definitely raise the score further. However, we hypothesize that cross sentence

attention forces less reliance on the encoder. Therefore, stacked BiLSTMs and

RCRNs perform similarly.

The results on SciTail similarly show that RCRN is more effective than BiLSTM
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Table 9.8: Results on WikiQA and TrecQA datasets for answer retrieval.

WikiQA TrecQA
Model MAP MRR MAP MRR
BiLSTM 68.5 69.8 72.4 82.5
3L-BiLSTM 69.3 71.3 73.0 83.6
RCRN 71.1 72.3 75.4 85.5
AP-BiLSTM 63.9 69.9 75.1 80.0
AP-3L-BiLSTM 69.8 71.3 73.3 83.4
AP-RCRN 72.4 73.7 77.9 88.2

(+1%). Moreover, RCRN outperforms several baselines in [84] including models

that use cross sentence attention such as DecompAtt [21] and ESIM [76]. However,

it still falls short to recent state-of-the-art models such as OpenAI’s Generative

Pretrained Transformer [15].

Answer Retrieval Results on the answer retrieval (Table 9.8) task show that

RCRN leads to considerable improvements on both WikiQA and TrecQA datasets.

We investigate two settings. Firstly, we reimplement AP-BiLSTM and swap the

BiLSTM for RCRN encoders. Secondly, we completely remove all attention layers

from both models to test the ability of the standalone encoder. Without attention,

RCRN gives an improvement of + ≈ 2% on both datasets. With attentive pooling,

RCRN maintains a + ≈ 2% improvement in terms of MAP score. However, the

gains on MRR are greater (+4− 7%). Notably, the AP-RCRN model outperforms

the official results reported in [100]. Overall, we observe that RCRN is much

stronger than BiLSTMs and 3L-BiLSTMs on this task.

Machine Reading Comprehension Results (Table 9.9) show that enhancing

R-NET with RCRN can lead to considerable improvements. This leads to an

improvement of ≈ 1% − 2% on all four metrics. Note that our model only uses a

single layered RCRN while R-NET uses 3 layered BiGRUs. This empirical evidence

might suggest that RCRN is a better way to utilize multiple recurrent layers.

Overall Results Across all 26 datasets, RCRN outperforms not only standard

BiLSTMs but also 3L-BiLSTMs which have approximately equal parameteriza-

tion. 3L-BiLSTMs are overall better than BiLSTMs but lose out on a minority

of datasets. RCRN outperforms a wide range of competitive baselines such as
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Table 9.9: Results on NarrativeQA dataset for machine reading comprehension
.

Model Bleu-1 Bleu-4 Meteor Rouge
Seq2Seq 16.1 1.40 4.2 13.3
ASR 23.5 5.90 8.0 23.3
BiDAF 33.7 15.5 15.4 36.3
R-NET 34.9 20.3 18.0 36.7
RCRN 38.1 21.8 18.1 38.3

Table 9.10: Training/Inference times on IMDb dataset.

Training Time (sec/epoch) Inference (sec/epoch)
16 32 64 128 256 16 32 64 128 256

3 layer BiLSTM 29 50 113 244 503 12 20 38 72 150
BiLSTM 18 30 63 131 272 9 15 28 52 104
1 layer BiLSTM (cuDNN) 5 6 9 14 26 2 3 4 6 10
3 layer BiLSTM (cuDNN) 10 14 23 42 80 4 5 9 16 32

RCRN (cuDNN) 19 29 53 101 219 8 12 23 41 78
RCRN (cuDNN +cuda) 10 13 21 40 78 4 5 8 15 29

DiSAN, Bi-SRUs, BCN and LSTM-CNN, etc. We achieve (close to) state-of-the-

art performance on SST, TREC question classification and 16 Amazon Review

datasets.

9.3.4 Runtime Analysis

This section aims to get a benchmark on model performance with respect to model

efficiency. In order to do that, we benchmark RCRN along with BiLSTMs and 3

layered BiLSTMs (with and without cuDNN optimization) on different sequence

lengths (i.e., 16, 32, 64, 128, 256). We use the IMDb sentiment task. We use the

same standard hardware (a single Nvidia GTX1070 card) and an identical over-

arching model architecture. The dimensionality of the model is set to 200 with a

fixed batch size of 32. Finally, we also benchmark a CUDA optimized adaptation

of RCRN which has been described earlier (Section 9.2.3).

Table 9.10 reports training/inference times of all benchmarked models. The fastest

model is naturally the 1 layer BiLSTM (cuDNN). Intuitively, the speed of RCRN

should be roughly equivalent to using 3 BiLSTMs. Surprisingly, we found that

the cuda optimized RCRN performs consistently slightly faster than the 3 layer

BiLSTM (cuDNN). At the very least, RCRN provides comparable efficiency to
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using stacked BiLSTM and empirically we show that there is nothing to lose in this

aspect. However, we note that cuda-level optimizations have to be performed. Fi-

nally, the non-cuDNN optimized BiLSTM and stacked BiLSTMs are also provided

for reference.

9.4 Summary

We proposed Recurrently Controlled Recurrent Networks (RCRN), a new recur-

rent architecture and encoder for a myriad of NLP and NLU tasks. RCRN op-

erates in a novel controller-listener architecture which uses RNNs to learn the

gating functions of another RNN. We apply RCRN to a potpourri of NLP tasks

and achieve promising/highly competitive results on all tasks and 26 benchmark

datasets. Overall findings suggest that the controller-listener architecture is more

effective than stacking RNN layers. Moreover, RCRN remains equally (or slightly

more) efficient compared to stacked RNNs of approximately equal parameteriza-

tion. There are several potential interesting directions for further investigating

RCRNs. These include investigating RCRNs controlling other RCRNs and in-

vestigating RCRNs in other domains where recurrent models are also prevalent

for sequence modeling. The source code of our model can be found at https:

//github.com/vanzytay/NIPS2018_RCRN.

https://github.com/vanzytay/NIPS2018_RCRN
https://github.com/vanzytay/NIPS2018_RCRN


Chapter 10

Hyperbolic Representations for

Natural Language Understanding

Neural ranking models are commonplace in many modern natural language un-

derstanding and question answering (QA) systems [3, 163]. In these applications,

the problem of question answering is concerned with learning to rank candidate

answers in response to questions. While highly performant systems (as introduced

in previous chapters) are great, there are occasions which call for model efficiency,

i.e., model deployment on mobile devices or requirements for high latency inference.

To this end, we seek out novel inductive biases, such as representation learning in

non-Euclidean spaces. In this chapter1, we discuss our proposed HyperQA model.

10.1 Introduction

In this chapter, we propose an extremely simple neural ranking based NLU model

for question answering that achieves highly competitive results on several bench-

marks with only a fraction of the run time and only 40K-90K parameters (as op-

posed to millions). Our neural ranking models the relationships between QA pairs

in hyperbolic space instead of Euclidean space. Hyperbolic space is an embedding

space with a constant negative curvature in which the distance towards the border

1This chapter is published as Hyperbolic Representation Learning for Fast and Efficient Neural
Question Answering, Proceedings of WSDM 2018 [2].
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is increasing exponentially. Intuitively, this makes it suitable for learning embed-

dings that reflect a natural hierarchy (e.g., networks, text, etc.) which we believe

might benefit neural ranking models for QA. Notably, our work is inspired by the

recently incepted Poincaré embeddings [246] which demonstrates the effectiveness

of inducing a structural (hierarchical) bias in the embedding space for improved

generalization. In our early empirical experiments, we discovered that a simple

feed-forward neural network trained in hyperbolic space is capable of outperform-

ing more sophisticated models on several standard benchmark datasets. We believe

that this can be attributed to two reasons. Firstly, latent hierarchies are promi-

nent in QA. Aside from the natural hierarchy of questions and answers, conceptual

hierarchies also exist. Secondly, natural language is inherently hierarchical which

can be traced to power law distributions and Zipf’s law [247].

In this work, we seek a new paradigm for neural ranking for QA. While many

recent works try to out-stack each other with new layers, we strip down our network

instead. Our work is inspired by the very recent Poincarè embeddings [246] which

demonstrates the superiority and efficiency of generalization in hyperbolic space.

Moreover, this alleviates many overfitting and complexity issues that Euclidean

embeddings might face especially if the data has intrinsic hierarchical structure. It

is good to note that power-law distributions, such as Zipf’s law, have been known to

be from innate hierarchical structure [247]. Specifically, the defining characteristic

of hyperbolic space is much quicker expansion relative to that of Euclidean space

which makes it naturally equipped for modeling hierarchical structure. Hyperbolic

spaces have been applied to domains such as complex network modeling [248],

social networks [249] and geographic routing [250].

There are several key geometric intuitions regarding hyperbolic spaces. Firstly, the

concepts of distance and area are warped in hyperbolic spaces. Specifically, each

tile in Figure 10.1(A) is of equal area in hyperbolic space but diminishes towards

zero in Euclidean space towards the boundary. Secondly, hyperbolic spaces are

conformal, i.e., angles in hyperbolic spaces and Euclidean spaces are identical. In

Figure 10.1(B), the arcs on the curve are parallel lines that are orthogonal to the

boundary. Finally, hyperbolic spaces can be regarded as larger spaces relative

to Euclidean spaces due to the fact that the concept of relative distance can be

expressed much better, i.e., not only does the distance between two vectors encode
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(a) ‘Circle Limit 1’ by M.C Escher (b) Hyperbolic parallel lines

Figure 10.1: Illustration of hyperbolic space.

information but also where a vector is placed in hyperbolic space. This enables

efficient representation learning.

In [246], Nickel et al. applied the hyperbolic distance (specifically, the Poincarè

distance) to model taxonomic entities and graph nodes. Notably, our work, to the

best of our knowledge, is the only work that learns QA embeddings in hyperbolic

space. Moreover, questions and answers introduce an interesting layer of complexity

to the problem since QA embeddings are in fact compositions of their constituent

word embeddings. On the other hand, nodes in a graph and taxonomic entities

in [246] are already at its most abstract form, i.e., symbolic objects. As such, we

believe it would be interesting to investigate the impacts of QA in hyperbolic space

in lieu of the added compositional nature.

The key contributions in this work are as follows:

• We propose a new neural ranking model for ranking of question answer pairs.

For the first time, our proposed model, HyperQA, performs matching of

question and answer in hyperbolic space. To the best of our knowledge,

we are the first to model QA pairs in hyperbolic space. While hyperbolic

geometry and embeddings have been explored in the domains of complex

networks or graphs [248], our work is the first to investigate the suitability

of this metric space for question answering.

• HyperQA is an extremely fast and parameter efficient model that achieves

very competitive results on multiple QA benchmarks such as TrecQA, Wik-

iQA and YahooCQA. The efficiency and speed of HyperQA are attributed

by the fact that we do not use any sophisticated neural encoder and have no

complicated word interaction layer. In fact, HyperQA is a mere single lay-

ered neural network with only 90K parameters. Very surprisingly, HyperQA

actually outperforms many state-of-the-art models such as Attentive Pooling
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Figure 10.2: Architecture of HyperQA.

BiLSTMs [100, 101] and Multi-Perspective CNNs [163]. We believe that this

allows us to reconsider if many of these complex word interaction layers are

really necessary for good performance.

• We conduct extensive qualitative analysis of both the learned QA embed-

dings and word embeddings. We discover several interesting properties of

QA embeddings in hyperbolic space. Due to its compositional nature, we

find that our model learns to self-organize not only at the QA level but also

at the word-level. Our qualitative studies enable us to gain a better intuition

pertaining to the good performance of our model.

10.2 Proposed Method

This section outlines the overall architecture of our proposed model. Similar to

many neural ranking models for QA, our network has ‘two’ sides with shared pa-

rameters, i.e., one for question and another for answer. However, since we optimize

for a pairwise ranking loss, the model takes in a positive (correct) answer and a

negative (wrong) answer, and aims to maximize the margin between the scores of

the correct QA pair and the negative QA pair. Figure 10.2 depicts the overall

model architecture.
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10.2.1 Embedding Layer

Our model accepts three sequences as an input, i.e., the question (denoted as q),

the correct answer (denoted as a) and a randomly sampled corrupted answer (de-

noted as a′). Each sequence consists of M words where Mq and Ma are predefined

maximum sequence length for questions and answers respectively. Each word is

represented as a one-hot vector (representing a word in the vocabulary). As such,

this layer is a look-up layer that converts each word into a low-dimensional vector

by indexing onto the word embedding matrix. In our implementation, we initialize

this layer with pretrained word embeddings [16]. Note that this layer is not updated

during training. Instead, we utilize a projection layer that learns a task-specific

projection of the embeddings.

10.2.2 Projection Layer

In order to learn a task-specific representation for each word, we utilize a projection

layer. The projection layer is essentially a single layered neural network that is

applied to each word in all three sequences.

x = σ(Wp z + bp) (10.1)

where Wp ∈ Rd×n, z ∈ Rn, x ∈ Rd and σ is a non-linear function such as the

rectified linear unit (ReLU). The output of this layer is a sequence of d-dimensional

embeddings for each sequence (question, positive answer and negative answer).

Note that the parameters of this projection layer are shared for both question and

answer.

10.2.3 Learning QA Representations

In order to learn question and answer representations, we simply take the sum of

all word embeddings in the sequence.

y∗ =
M∗∑
i=1

x∗i (10.2)
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where ∗ = {q, a, a′}. M is the predefined max sequence length (specific to question

and answer) and x1, x2 . . . xM are d-dimensional embeddings of the sequence. This

is essentially the neural bag-of-words (BoW) representation. Unlike popular neural

encoders such as LSTM or CNN, the NBOW representation does not add any

parameters and is much more efficient. Additionally, we constrain the question and

answer embeddings to the unit ball before passing to the next layer, i.e., ‖y∗‖ ≤ 1.

This is easily done via y∗ = y∗

‖y∗‖ where ‖y∗‖ > 1. Note that this projection of QA

embeddings onto the unit ball is mandatory and absolutely crucial for HyperQA

to even work.

10.2.4 Hyperbolic Representations of QA Pairs

Neural ranking models are mainly characterized by the interaction function between

question and answer representations. In our work, we mainly adopt the hyperbolic

distance function to model the relationships between questions and answers. While

there exist multiple models of hyperbolic geometry such as the Beltrami-Klein

model or the Hyperboloid model, we adopt the Poincarè ball/disk due to its ease

of differentiability and freedom from constraints [246]. Formally, let Bd = {x ∈
Rd | ‖x‖ < 1} be the open d-dimensional unit ball, our model corresponds to the

Riemannian manifold (Bd, gx) and is equipped with the Riemannian metric tensor

given as follows:

gx = (
2

1− ‖x‖2 )2gE (10.3)

where gE is the Euclidean metric tensor. The hyperbolic distance function between

question and answer is defined as:

d(q, a) = arcosh(1 + 2
‖q − a‖2

(1− ‖q‖2)(1− ‖a‖2)
) (10.4)

where ‖.‖ denotes the Euclidean norm and q, a ∈ Rd are the question and answer

embeddings respectively. Note that arcosh is the inverse hyperbolic cosine func-

tion, i.e., arcosh x = ln(x +
√

(x2 − 1)). Notably, d(q, a) changes smoothly with

respect to the position of q and a which enables the automatic discovery of latent

hierarchies. As mentioned earlier, the distance increases exponentially as the norm

of the vectors approaches 1. As such, the latent hierarchies of QA embeddings are
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captured through the norm of the vectors. From a visual perspective, the origin

can be seen as the root of a tree that branches out towards the boundaries of the

hyperbolic ball. This self-organizing ability of the hyperbolic distance is visually

and qualitatively analyzed in later sections.

10.2.5 Final Transform

Finally, we pass the hyperbolic distance through a linear transformation described

as follows:

s(q, a) = wf d(q, a) + bf (10.5)

where wf ∈ R1 and bf ∈ R1 are scalar parameters of this layer. The performance of

this layer is empirically motivated and was selected amongst other variants such as

exp(−d(q, a)), non-linear activations such as sigmoid function or the raw hyperbolic

distance.

10.2.6 Optimization and Learning

This section describes the optimization and learning process of HyperQA. Our

model learns via a pairwise ranking loss, which is well suited for metric-based

learning algorithms.

10.2.6.1 Pairwise Hinge Loss

Our network minimizes the pairwise hinge loss which is defined as follows:

L =
∑

(q,a)∈∆q

∑
(q,a′)6∈∆q

max(0, s(q, a) + λ− s(q, a′)) (10.6)

where ∆q is the set of all QA pairs for question q, s(q, a) is the score between q and a,

and λ is the margin which controls the extent of discrimination between positive QA

pairs and corrupt QA pairs. The adoption of the pairwise hinge loss is motivated

by the good empirical results demonstrated in Rao et al. [167]. Additionally, we
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also adopt the mix sampling strategy for sampling negative samples as described

in their work.

10.2.6.2 Gradient Conversion

Since our network learns in hyperbolic space, parameters have to be learned via

stochastic Riemannian optimization methods such as RSGD [251].

θt+1 = <θt(−η∇R `(θt)) (10.7)

where <θt denotes a retraction onto B at θ. η is the learning rate and ∇R `(θt) is

the Riemannian gradient with respect to θt. Fortunately, the Riemannian gradient

can be easily derived from the Euclidean gradient in this case [251]. In order to do

so, we can simply scale the Euclidean gradient by the inverse of the metric tensor

g−1
θ . Overall, the final gradients used to update the parameters are:

∇R =
(1− ‖θt‖2)2

4
∇E (10.8)

For more details, including the derivation of the Euclidean gradient, we refer in-

terested readers to [246, 251] for more details. For practical purposes, we simply

utilize the automatic gradient feature of TensorFlow [152] but convert the gradients

in Equation (10.8) before updating the parameters.

10.3 Experiments

This section describes our empirical evaluation and its results.

10.3.1 Datasets

In the spirit of experimental rigor, we conduct our empirical evaluation based on

four popular and well-studied benchmark datasets for question answering.

TrecQA As discussed in Chapter 4, TrecQA is the benchmark dataset provided

by Wang et al. [232]. This dataset was collected from TREC QA tracks 8-13 and is
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Table 10.1: Statistics of datasets.

TrecQA WikiQA YahooCQA SemEvalCQA
Train Qns 1229 94 501K 4.8K
Dev Qns 82 65 6.2K 224
Test Qns 100 68 6.2K 327

Train Pairs 53K 5.9K 253K 36K
Dev Pairs 1.1K 1.1K 31.7K 2.4K
Test Pairs 1.5K 1.4K 31.7K 3.2K

comprised of factoid based questions which mainly answers ‘who’, ‘what’, ‘where’,

‘when’, ‘why’ type of questions. There are two versions, clean and raw as noted by

[167] which we evaluate our models on.

WikiQA As discussed in Chapter 9, this is a recently popular benchmark dataset

[231] for open-domain question answering based on factual questions from Wikipedia

and Bing search logs.

YahooCQA This is a benchmark dataset for community-based question answer-

ing that was collected from Yahoo Answers. In this dataset, the answer lengths are

relatively longer than TrecQA and WikiQA. Therefore, we filtered answers that

have more than 50 words and less than 5 characters. The train-dev-test splits for

this dataset are provided by [252].

SemEvalCQA This is a well-studied benchmark dataset from SemEval-2016

Task 3 Subtask A (CQA). This is a real-world dataset obtained from Qatar Living

Forums. In this dataset, there are ten answers in each question ‘thread’ which are

marked as ‘Good‘, ‘Potentially Useful’ or ‘’Bad’. We treat ‘Good’ as positive and

anything else as negative labels.

Statistics pertaining to each dataset is given in Table 10.1.

10.3.2 Compared Baselines

In this section, we introduce the following baselines for comparison.
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TrecQA The key competitors on the dataset are mainly the CNN model of Sev-

eryn et al. [3], the Attention-based Neural Matching Model (aNMM) of Yang et

al. [162], HD-LSTM (Tay et al.) [252] and Multi-Perspective CNN (MP-CNN) [98]

proposed by He et al. Lastly, we also compare with the pairwise ranking adaption

of the MP-CNN (Rao et al.) [167]. Additionally and due to long standing nature of

this dataset, there have been a huge number of works based on traditional feature

engineering approaches [232, 253–255] which we also report. For the clean version

of this dataset, we also compare with AP-CNN and QA-BiLSTM/CNN [100].

WikiQA The key competitors of this dataset are the Paragraph Vector (PV)

[256] of Le and Mikolv, CNN model from Yu et al. [257] and LCLR (Yih et

al.) [258]. These three baselines are reported in the original WikiQA paper [231]

which also include variations that include handcrafted features. Additional strong

baselines include QA-BiLSTM and QA-CNN from [100] along with AP-BiLSTM

and AP-CNN which are attentive pooling improvements of the former. Finally, we

also report the Pairwise Ranking MP-CNN from Rao et al. [167].

YahooCQA The key competitors of this dataset are the Neural Tensor LSTM

(NTN-LSTM) and HD-LSTM from Tay et al. [252] along with their implementa-

tion of the Convolutional Neural Tensor Network [95], CNN model of Severyn et

al. [3] and the Okapi BM-25 [259] benchmark. Additionally, we also report our

own implementations of QA-BiLSTM, QA-CNN, AP-BiLSTM and AP-CNN on

this dataset based on our experimental setup.

SemEvalCQA The key competitors of this dataset are the CNN-based ARC-I/II

architecture by Hu et al. [260], the Attentive Pooling CNN [100], Kelp (Filice et

al.) [168] a feature engineering based SVM method, ConvKN [169] a combination

of convolutional tree kernels with CNN and finally AI-CNN (Attentive Interactive

CNN) [101], a tensor-based attentive pooling neural model. A comparison with

AI-CNN (with features) is also included.

Since the training splits are standard, we are able to directly report the results

from the original papers.
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10.3.3 Evaluation Protocol

This section describes the key evaluation protocol/metrics and implementation

details of our experiments.

Metrics We adopt a dataset specific evaluation protocol in which we follow the

prior work in their evaluation protocols. Specifically, TrecQA and WikiQA adopt

the Mean Reciprocal Rank (MRR) and MAP (Mean Average Precision) metrics

which are commonplace in IR research. On the other hand, YahooCQA and Se-

mEvalCQA are evaluated based on MAP and Precision@1 (abbreviated P@1)

which are determined based on whether the top predicted answer is the ground

truth. For all competitor methods, we report the performance results from the

original paper.

Training time & Parameter Size Additionally, we report the parameter size

and runtime (seconds per epoch) of selected models. We selectively re-implement

some of the key competitors with the best performance and benchmark their train-

ing time on our machine/GPU (a single Nvidia GTX1070). For reporting the

parameter size and training time, we try our best to follow the hyperparameters

stated in the original papers. As such, the same model can have different training

time and parameter size on different datasets.

Hyperparameters HyperQA is implemented in TensorFlow [152]. We adopt

the AdaGrad [261] optimizer with initial learning rate tuned amongst {0.2, 0.1, 0.05, 0.01}.
The batch size is tuned amongst {50, 100, 200}. Models are trained for 25 epochs

and the model parameters are saved each time the performance on the validation set

is topped. The dimension of the projection layer is tuned amongst {100, 200, 300, 400}.
L2 regularization is tuned amongst {0.001, 0.0001, 0.00001}. The negative sampling

rate is tuned from 2−8. Finally, the margin λ is tuned amongst {1, 2, 5, 10, 20}. For

TrecQA, WikiQA and YahooCQA, we initialize the embedding layer with GloVe

[16] and use the version with d = 300 and trained on 840 billion words. For

SemEvalCQA, we trained our own GloVe model using the unannotated corpus

provided by the task. In this case, the embedding dimension is tuned amongst
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{100, 200, 300}. Embeddings are not updated during training. For the SemEval-

CQA dataset, we also found that it helped to concatenate the raw QA embeddings

before passing into the final layer.

10.3.4 Results and Analysis

In this section, we present our empirical results on all datasets.

Experimental Results on TrecQA Table 10.2 reports the results on TrecQA

(raw). HyperQA achieves very competitive performance on both MAP and MRR

metrics. Specifically, HyperQA outperforms the basic CNN model of (Severyn et

al.) by 2% − 3% in terms of MAP/MRR. Moreover, the CNN model of Severyn

et al. uses handcrafted features which HyperQA does not require. Similarly, the

aNMM model and HD-LSTM also benefit from additional features but are out-

performed by HyperQA. HyperQA also outperforms MP-CNN but is around

10 times faster and has 100 times less parameters. MP-CNN consists of a huge

number of filter banks and utilizes heavy parameterization to match multiple per-

spectives of questions and answers. On the other hand, our proposed HyperQA is

merely a single layered neural network with 90K parameters and yet outperforms

MP-CNN. Similarly, Table 10.3 reports the results on TrecQA (clean). Similarly,

HyperQA also outperforms MP-CNN, AP-CNN and QA-CNN. On both datasets,

the performance of HyperQA is competitive to Rank MP-CNN.

Experimental Results on WikiQA Table 10.4 reports our results on the Wik-

iQA dataset. Firstly, we observe that HyperQA outperforms a myriad of complex

neural architectures. Notably, we obtain a clear performance gain of 2% − 3% in

terms of MAP/MRR against models such as AP-CNN or AP-BiLSTM. Our model

also outperforms MP-CNN which is severely equipped with parameterized word

matching mechanisms. We achieve competitive results relative to the Rank MP-

CNN. Finally, HyperQA is extremely efficient and fast, clocking 2s per epoch

compared to 33s per epoch for Rank MP-CNN. The parameter cost is also 90k vs

10 million which is a significant improvement.
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Table 10.2: Results on TrecQA (raw) dataset.

Model MAP MRR # Params Time

Wang et al. (2007) 0.603 0.685 - -
Heilman et al. (2010) 0.609 0.692 - -

Wang et al. (2010) 0.595 0.695 - -
Yao (2013) 0.631 0.748 - -

Severyn et al. (2013) 0.678 0.736 - -
Yih et al (2014) 0.709 0.770 - -

CNN-Cnt (Yu et al.) 0.711 0.785 - -
BLSTM + BM25 0.713 0.791 - -
CNN (Severyn) 0.746 0.808 - -

aNMM 0.750 0.811 - -
HD-LSTM 0.750 0.815 - -
MP-CNN 0.762 0.822 10.0M 141s

Rank MP-CNN 0.780 0.830 10.0M 130s

HyperQA 0.770 0.825 90K 12s

Table 10.3: Results on TrecQA (clean) dataset.

Model MAP MRR # Params Time

QA-LSTM / CNN 0.728 0.832 - -
AP-CNN 0.753 0.851 - -
MP-CNN 0.777 0.836 10M 141

Rank MP-CNN 0.801 0.877 10M 130s

HyperQA 0.784 0.865 90K 12s

Table 10.4: Results on WikiQA dataset

Model MAP MRR #Params Time

PV 0.511 0.516 - -
PV-Cnt 0.599 0.609 - -
LCLR 0.599 0.609 - -

CNN-Cnt 0.652 0.665 - -
QA-BiLSTM 0.656 0.670 - -

QA-CNN 0.670 0.682 - -
AP-BiLSTM 0.671 0.684 - -

AP-CNN 0.688 0.696 - -
MP-CNN 0.693 0.709 10.0M 35s

Rank MP-CNN 0.701 0.718 10.0M 33s

HyperQA 0.712 0.727 90K 2s

Experimental Results on YahooCQA Table 10.5 reports the experimental

results on YahooCQA. First, we observe that HyperQA outperforms AP-BiLSTM

and AP-CNN significantly. Specifically, we outperform AP-BiLSTM, the runner-up

model by 6% in terms of MRR and 10% in terms of MAP. Notably, HyperQA is

32 times faster than AP-BiLSTM and has 20 times less parameters. Our approach
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Table 10.5: Results on YahooCQA dataset.

Model P@1 MRR # Params Time

Random Guess 0.200 0.457 - -
BM-25 0.225 0.493 - -
CNN 0.413 0.632 - -

CNTN 0.465 0.632 - -
LSTM 0.465 0.669 - -

NTN-LSTM 0.545 0.731 - -
HD-LSTM 0.557 0.735 - -

QA-BiLSTM 0.508 0.683 1.40M 440s
QA-CNN 0.564 0.727 90.9K 60s
AP-CNN 0.560 0.726 540K 110s

AP-BiLSTM 0.568 0.731 1.80M 640s

HyperQA 0.683 0.801 90.0K 20s

Table 10.6: Results on SemEvalCQA dataset.

Model P@1 MAP #Params Time

ARC-I 0.741 0.771 - -
ARC-II 0.753 0.780 - -

AP-CNN 0.755 0.771 - -
Kelp 0.751 0.792 - -

ConvKN 0.755 0.777 - -
AI-CNN 0.763 0.792 140K 3250s

AI-CNN + features 0.769 0.801 140K 3250s

HyperQA 0.809 0.795 45K 10s

shows that complicated attentive pooling mechanisms are not necessary for good

performance.

Experimental Results on SemEvalCQA Table 10.6 reports the experimen-

tal results on SemEvalCQA. Our proposed approach achieves highly competitive

performance on this dataset. Specifically, we have obtained the best P@1 perfor-

mance overall, outperforming the state-of-the-art AI-CNN model by 3% in terms

of P@1. The performance of our model on MAP is marginally short from the best

performing model. Notably, AI-CNN has benefited from external handcrafted fea-

tures. As such, comparing AI-CNN (w/o features) with HyperQA shows that

our proposed model is a superior neural ranking model. Next, we draw the readers

attention to the time cost of AI-CNN. The training time per epoch is ≈ 3250s

per epoch which is about 300 times longer than our model. AI-CNN is extremely

cost prohibitive, i.e., attentive pooling is already very expensive and yet AI-CNN

performs 3D attentive pooling. Evidently, its performance can be easily superseded
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Table 10.7: Overall performance of HyperQA.

Ours against Performance Params Speed
AP-BiLSTM 1-7% better 20x less 32 x faster

AP-CNN 1-12% better Same 3x faster
AI-CNN Competitive 3x less 300x faster
MP-CNN 1-2% better 100x less 10x faster

Rank MP-CNN Competitive 100x less 10x faster

in a much smaller training time and parameter cost. This raises questions about

the effectiveness of the 3D attentive pooling mechanism.

Overall Analysis Overall, we summarize the key findings of our experiments.

• It is possible to achieve very competitive performance with small parameter-

ization and no word matching or interaction layers. HyperQA outperforms

complex models such as MP-CNN and AP-BiLSTM on multiple datasets.

• The relative performance of HyperQA is significantly better on large datasets,

e.g., YahooCQA (253K training pairs) as opposed to smaller ones like Wik-

iQA (5.9K training pairs). We believe that this is due to the fact that hy-

perbolic space is seemingly larger than Euclidean space.

• HyperQA is extremely fast and trains at 10 − 20 times faster than com-

plex models like MP-CNN. Note that if CPUs are used instead of GPUs

which speeds convolutions up significantly, this disparity would be signifi-

cantly larger.

• Our proposed approach does not require handcrafted features and yet out-

performs models that benefit from them. This is evident on all datasets, i.e.,

HyperQA outperforms CNN model with features (TrecQA and WikiQA)

and AI-CNN + features on SemEvalCQA.

10.3.5 Effects of QA Embedding Size

In this section, we study the effects of the QA embedding size on performance. Fig-

ure 10.3 describes the relationship between QA embedding size (d) and MAP on the

WikiQA dataset. Additionally, we include a simple baseline (CosineQA) which is
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Figure 10.3: Effects of QA embedding size on WikiQA.

exactly the same as HyperQA but uses cosine similarity instead of hyperbolic dis-

tance. The MAP scores of three other reported models (MP-CNN, CNN-Cnt and

PV-Cnt) are also reported for reference. Firstly, we notice the disparity between

HyperQA and CosineQA in terms of performance. While CosineQA maintains

a stable performance throughout embedding size, the performance of HyperQA

rapidly improves at d > 150. In fact, the performance of HyperQA at d = 150

(45K parameters) is already similar to the Multi-Perspective CNN [98] which con-

tains 10 million parameters. Moreover, the performance of HyperQA outperforms

MP-CNN with d = 250-300.

10.3.6 Discussion and Analysis

This section delves into qualitative analysis of our model.

10.3.7 Analysis of QA Embeddings

Figure 10.4 and Figure 10.5 show the visualization of QA embeddings on the test

set TrecQA projected in 3-dimensional space using t-SNE [262]. QA embeddings

are extracted from the network as discussed in Section 10.2.3. We observe that

question embeddings form a ‘sphere’ over answer embeddings. Contrastingly, this

is not exhibited when the cosine similarity is used as shown in Figure 10.5. It is

important to note that these are embeddings from the test set which have not been

trained and therefore the model is not explicitly told whether a particular textual
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Figure 10.4: Embeddings from HyperQA.
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Figure 10.5: Embeddings from CosineQA.

input is a question or answer. This demonstrates the innate ability of HyperQA

to self-organize and learn latent hierarchies. Additionally, Figure 10.6(A) shows a

histogram of the vector norms of question and answer embeddings. We can clearly

see that questions in general have a higher vector norm2 and are at a different

hierarchical level from answers. In order to further understand what the model is

doing, we delve deeper into visualization at a word-level.

10.3.8 Analysis of Word Embeddings

Table 10.8 shows some examples of words at each hierarchical level of the sphere

on TrecQA. Recall that the vector norms3 allow us to infer the distance of the

word embedding from the origin which depicts its hierarchical level in our context.

2We extract QA embeddings right before the constraining/normalization layer.
3Note that word embeddings are not constrained to ‖x‖ < 1.
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Figure 10.6: Histogram plots of embedding norms.

Interestingly, we find that HyperQA exhibits self-organizing ability even at a

word-level. Specifically, we notice that the words closer to the origin are common

words such as ‘to’, ‘and’ which do not have much semantic values for QA problems.

At the middle of the hierarchy (‖w‖ ≈ 3), we notice that there are more verbs.

Finally, as we move towards the surface of the ‘sphere’, the words become rarer

and reflect more domain-specific words such as ‘ebay’ and ‘spielberg’. Moreover,

we also found many names and proper nouns occurring at this hierarchical level.

Additionally, we also observe that words such as ’where’ or ’what’ have relatively

high vector norms and located quite high up in the hierarchy. This is in concert with

Figure 10.4 which shows the question embeddings form a sphere around the answer

embeddings. At last, we parsed QA pairs word-by-word according to hierarchical

level (based on their vector norm).

Table 10.9 reports the outcome of this experiment where H1−H5 are hierarchical

levels based on vector norms. Most informative word matches are in boldface. Note

that some words might be omitted from the answer for clarity.

First, we find that questions often start with the overall context and drill down

into more specific query words. Take the first example in Table 10.9, it begins at

a top level with ‘burger king’ and then drills down progressively to ’what is gross

sales?’. Similarly in the second example, it begins with ‘florence nightingale’ and

drills down to ‘famous’ at H3 in which a match is being found with ‘nursing’ in the

same hierarchical level. Overall, based on our qualitative analysis, we believe that,

HyperQA builds two hierarchical structures at the word-level (in vector space)

towards the middle which strongly facilitates word-level matching. Pertaining to

answers, it seems like the model builds a hierarchy by splitting on conjunctive words
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Table 10.8: Examples of words in each hierarchical level.

‖w‖ Words (w)
0-1 to, and, an, on, in, of, its, the, had, or, go
1-2 be, a, was, up, put, said, but
2-3 judging, returning, volunteered, managing, meant, cited
3-4 responsibility, engineering, trading, prosecuting
4-5 turkish, autonomous, cowboys, warren, seven, what
5-6 ebay, magdalena, spielberg, watson, nova

Table 10.9: Analysis of QA pairs with respect to hierarchy.

Question H1 H2 H3 H4 H5

What is the
gross sale of
Burger King

Q are sales,
today

gross is, what burger,
king

A based sales,
14,bil-
lion,
183

diageo contributedburger,
corp

What is Flo-
rence Nightin-
gale famous for

Q in, the for famous what florence,
nightin-
gale

A of, in was nursing founder,
modern,
born

nightingale,
italy

Who is the
founder of
twitter?

Q the, of - twitter,
founder

- who, is

A and, the in, net-
working,
launched

twitter,
jack
dorsey,
july

match,
social

-

(‘and’), i.e., the root node of the tree starts by conjunctive words and semantically

segments.

10.4 Summary

We proposed a new neural ranking model for question answering. Our proposed

HyperQA achieves very competitive performance on four well-studied benchmark

datasets. Our model is light-weight, fast and efficient outperforming many state-

of-the-art models with complex word interaction layers or attentive mechanisms.
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Our model only has 40K-90K parameters as opposed to millions of parameters

which plague many competitor models. We derive qualitative insights pertaining

to our model which enable us to further understand its inner workings. Finally, we

believe that the superior generalization of our model (despite small parameters)

can be attributed to ‘dual hierarchical matching’ which is effectively an automatic,

free and parameter-less word interaction layer. The source code of our model can

be found https://github.com/vanzytay/WSDM2018_HyperQA.

https://github.com/vanzytay/WSDM2018_HyperQA


Chapter 11

Quaternion Representations for

Natural Language Understanding

Neural network architectures such as Transformers [24, 263] and attention net-

works [23, 110, 264] are dominant solutions in both NLP and NLU research today.

Many of these architectures are primarily concerned with learning useful feature

representations from data in which providing a strong architectural inductive bias

is known to be extremely helpful for obtaining stellar results. In previous chapters,

we have studied a wide range of neural models and architectures ranging from in-

dividual units to entire end-to-end architectures. Many of these models are known

to be heavily parameterized, with state-of-the-art models easily containing millions

or billions of parameters [13–15, 24]. This renders practical deployment challeng-

ing. As such, the enabling of efficient and lightweight adaptations of these models,

without significantly degrading performance, would certainly have a positive im-

pact on many real-world applications. In this chapter1, we discuss our proposed

Quaternion models for natural language understanding.

11.1 Introduction

This chapter explores a new way to improve/maintain the performance of these

neural architectures while substantially reducing the parameter cost (compression

1This chapter is published as Lightweight and Efficient Neural Natural Language Processing
with Quaternion Networks, Proceedings of ACL 2019 [69].

178
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of up to 75%). In order to achieve this, we move beyond real space, exploring

computation in Quaternion space (i.e., hypercomplex numbers) as an inductive

bias. Hypercomplex numbers comprise a real and three imaginary components

(e.g., i, j, k) in which inter-dependencies between these components are encoded

naturally during training via the Hamilton product ⊗. Hamilton products have

fewer degrees of freedom, enabling up to four times the compression of model size.

Technical details are deferred to subsequent sections.

While Quaternion connectionist architectures have been considered in various deep

learning application areas such as speech recognition [137], kinematics/human mo-

tion [265] and computer vision [266], our work is the first hypercomplex inductive

bias designed for a wide spread of NLP tasks. Other fields have motivated the us-

age of Quaternions primarily due to their natural 3 or 4 dimensional input features

(e.g., RGB scenes or 3D human poses) [137, 265]. In a similar vein, we can similarly

motivate this by considering the multi-sense nature of natural language [267–269].

In this case, having multiple embeddings or components per token is well-aligned

with this motivation.

Latent interactions between components may also enjoy additional benefits, espe-

cially pertaining to applications that require learning pairwise affinity scores [110,

264]. Intuitively, instead of regular (real) dot products, Hamilton products⊗ exten-

sively learn representations by matching across multiple (inter-latent) components

in hypercomplex space. Alternatively, the effectiveness of multi-view and multi-

headed [24] approaches may also explain the suitability of Quaternion spaces in

NLP models. The added advantage to multi-headed approaches is that Quaternion

spaces explicitly encode latent interactions between these components or heads via

the Hamilton product which intuitively increases the expressiveness of the model.

Conversely, multi-headed embeddings are generally independently produced.

To this end, we propose two Quaternion-inspired neural architectures, namely the

Quaternion Attention model and the Quaternion Transformer. In this chapter, we

devise and formulate a new attention (and self-attention) mechanism in Quaternion

space using Hamilton products. Transformation layers are aptly replaced with

Quaternion feed-forward networks, yielding substantial improvements in parameter

size (of up to 75% compression) while achieving comparable (and occasionally

better) performance.
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The overall contributions of our work are as follows:

• We propose Quaternion neural models for NLP. More concretely, we propose

a novel Quaternion Attention model and Quaternion Transformer for a wide

range of NLP tasks. To the best of our knowledge, this is the first formulation

of hypercomplex attention and Quaternion models for NLP.

• We evaluate our Quaternion NLP models on a wide range of diverse NLP

tasks such as pairwise NLU (natural language inference, question answering,

paraphrase identification, dialogue prediction), neural machine translation

(NMT), sentiment analysis, mathematical language understanding (MLU),

and subject-verb agreement (SVA).

• Our experimental results show that Quaternion models achieve compara-

ble or better performance to their real-valued counterparts with up to a

75% reduction in parameter costs. The key advantage is that these models

are expressive (due to Hamiltons) and also parameter efficient. Moreover,

our Quaternion components are self-contained and play well with real-valued

counterparts.

11.2 Proposed Method

11.2.1 Background on Quaternion Algebra

This section introduces the necessary background for this chapter. We introduce

Quaternion algebra along with Hamilton products, which form the crux of our

proposed approaches.

Quaternion A Quaternion Q ∈ H is a hypercomplex number with three imagi-

nary components as follows:

Q = r + xi + yj + zk, (11.1)

where ijk = i2 = j2 = k2 = −1 and noncommutative multiplication rules apply:

ij = k, jk = i,ki = j, ji = −k,kj = −i, ik = −j. In Equation (11.1), r is a
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real number and similarly, x, y, z are real numbers that represent the imaginary

components of the Quaternion vector Q. Operations on Quaternions are defined

in the following.

Addition and Subtraction The addition of two Quaternions is defined as:

Q+ P = Qr + Pr + (Qx + Px)i + (Qy + Py)j + (Qz + Pz)k

where Q and P with subscripts denote the real value and imaginary components

of Quaternion Q and P . Subtraction follows this same principle analogously but

flipping + with −.

Scalar Multiplication Scalar α multiplies across all components, i.e.,

αQ = αr + αxi + αyj + αzk

Conjugate The conjugate of Q is defined as:

Q∗ = r − xi− yj− zk.

Norm The unit Quaternion Q/ is defined as:

Q/ =
Q√

r2 + x2 + y2 + z2

Hamilton Product The Hamilton product, which represents the multiplication

of two Quaternions Q and P , is defined as:

Q⊗ P = (QrPr −QxPx −QyPy −QzPz)

+ (QxPr +QrPx −QzPy +QyPz) i

+ (QyPr +QzPx +QrPy −QxPz) j

+ (QzPr −QyPx +QxPy +QrPz) k (11.2)
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which intuitively encourages inter-latent interaction between all the four compo-

nents of Q and P . In this work, we use Hamilton products extensively for vector

and matrix transformations that live at the heart of attention models for NLP.

11.2.2 Quaternion Models of Language

In this section, we propose Quaternion neural models for language processing tasks.

We begin by introducing the building blocks, such as Quaternion Feed-Forward

Layer, Quaternion Attention, and Quaternion Transformers.

11.2.2.1 Quaternion Feed-Forward Layer

A Quaternion Feed-Forward Layer is similar to a feed-forward layer in real space,

while the former operates in hypercomplex space where Hamilton product is used.

Let W ∈ H be the weight parameter of a Quaternion feed-forward layer and let

Q ∈ H be the layer input. The linear output of the layer is the Hamilton product

of two Quaternions: W ⊗Q.

Saving Parameters? How and Why In lieu of the fact that it might not be

completely obvious at first glance why Quaternion models result in models with

smaller parameterization, we dedicate the following to address this.

For the sake of parameterization comparison, let us express the Hamilton product

W ⊗ Q in a Quaternion feed-forward layer in the form of matrix multiplication,

which is used in real-space feed-forward. Recall the definition of Hamilton product

in Equation (11.2). Putting aside the Quaterion unit basis [1, i, j,k]>, W ⊗Q can

be expressed as: 
Wr −Wx −Wy −Wz

Wx Wr −Wz Wy

Wy Wz Wr −Wx

Wz −Wy Wx Wr



r

x

y

z

 (11.3)

where W = Wr +Wxi +Wyj +Wzk and Q is defined in Equation (11.1).
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Figure 11.1: Quaternion weight sharing.

We highlight that, there are only 4 distinct parameter variable elements (4 degrees

of freedom), namely Wr,Wx,Wy,Wz, in the weight matrix (left) of Equation (11.3),

as illustrated by Figure 11.1. While in real-space feed-forward layer, all the ele-

ments of the weight matrix are different parameter variables (4× 4 = 16 degrees of

freedom). In other words, the degrees of freedom in Quaternion feed-forward layer

is only a quarter of those in its real-space counterpart, resulting in a 75% reduction

in parameterization. Such a parameterization reduction can also be explained by

weight sharing [137, 270]. As shown in Figure 11.1, 4 weight parameter variables

(Wr,Wx,Wy,Wz) are used in 16 pairwise connections between components of the

input and output Quaternions.

Nonlinearity Nonlinearity can be added to a Quaternion feed-forward layer and

component-wise activation is adopted [270]:

α(Q) = α(r) + α(x)i + α(y)j + +α(z)k

where Q is defined in Equation (11.1) and α(.) is a nonlinear function such as tanh

or ReLU.

Quaternion Attention Next, we propose a Quaternion Attention model to com-

pute attention and alignment between two sequences. LetA ∈ H`a×d andB ∈ H`b×d
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be input word sequences, where `a, `b are numbers of tokens in each sequence and

d is the dimension of each input vector. We first compute:

E = A⊗B>

where E ∈ H`a×`b . We apply Softmax(.) to E component-wise:

G = ComponentSoftmax(E)

B′ = GRBR +GXBXi +GYBY j +GZBZk

where G and B with subscripts represent the real and imaginary components of

G and B respectively. Similarly, we perform the same on A which is described as

follows:

F = ComponentSoftmax(E>)

A′ = FRAR + FXAXi + FYAY j + FZAZk

where A′ is the aligned representation of B and B′ is the aligned representation of

A. Next, given A′ ∈ R`b×d, B′ ∈ R`A×d we then compute and compare the learned

alignments:

C1 =
∑

QFFN([A′i;Bi, A
′
i ⊗Bi;A

′
i −Bi])

C2 =
∑

QFFN([B′i;Ai, B
′
i ⊗ Ai;B′i − Ai])

where QFFN(.) is a Quaternion feed-forward layer with nonlinearity and [; ] is

the component-wise contatentation operator. i refers to word positional indices

and
∑

over words in the sequence. Both outputs C1, C2 are then passed into the

Quaternion feed-forward layer as follows:

Y = QFFN([C1;C2;C1 ⊗ C2;C1 − C2])

where Y ∈ H is a Quaternion valued output. In order to train our model end-to-

end with real-valued losses, we concatenate each component and pass into a final

linear layer for classification.
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11.2.3 Quaternion Transformer

This section describes our Quaternion adaptation of Transformer networks. Trans-

former [24] can be considered as state-of-the-art across many NLP tasks. Trans-

former networks are characterized by stacked layers of linear transforms along with

its signature self-attention mechanism. For the sake of brevity, we outline the

specific changes we make to the Transformer model.

Quaternion Self-Attention The standard self-attention mechanism considers

the following:

A = softmax(
QK>√
dk

)V

whereQ,K, V are traditionally learned via linear transforms from the inputX. The

key idea here is that we replace this linear transform with a Quaternion transform.

Q = Wq ⊗X;K = Wk ⊗X;V = Wv ⊗X

where ⊗ is the Hamilton product and X is the input Quaternion representation of

the layer. In this case, since computation is performed in Quaternion space, the

parameters of W is effectively reduced by 75%. Similarly, the computation of self-

attention also relies on Hamilton products. The revised Quaternion self-attention

is defined as follows:

A = ComponentSoftmax(
Q⊗K√

dk
)V (11.4)

Note that in Equation (11.4), Q⊗K returns four `×` matrices (attention weights)

for each component (r, i, j, k). Softmax is applied component-wise, along with

multiplication with V which is multiplied in similar fashion to the Quaternion

Attention model. Note that the Hamilton product in the self-attention itself does

not change the parameter size of the network.

Quaternion Transformer Block Aside from the linear transformations for

forming query, key, and values. Tranformers also contain positional feed-forward

networks with ReLU activations. Similarly, we replace the feed-forward connections
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(FFNs) with Quaternion FFNs. We denote this as Quaternion Transformer (full)

while denoting the model that only uses Quaternion FFNs in the self-attention

as (partial). Finally, the remainder of the Transformer networks remain identical

to the original design [24] in the sense that component-wise functions are applied

unless specified above.

11.2.4 Embedding Layers

In the case where the word embedding layer is trained from scratch (i.e., using

byte-pair encoding in machine translation), we treat each embedding to be the

concatenation of its four components. In the case where pre-trained embeddings

such as GloVe [187] are used, a nonlinear transform is used to project the embed-

dings into Quaternion space.

11.2.5 Connection to Real Components

A vast majority of neural components in the deep learning arsenal operate in real

space. As such, it would be beneficial for our Quaternion-inspired components to

interface seamlessly with these components. If the input to a Quaternion module

(such as Quaternion FFN or attention modules) is real, we simply treat the real-

valued input as a concatenation of components r, x, y, z. Similarly, the output of

the Quaternion module, if passed to a real-valued layer, is treated as a [r;x; y; z],

where [; ] is the concatenation operator.

Output Layer and Loss Functions To train our model, we simply concatenate

all r, i, j, k components into a single vector at the final output layer. For example,

for classification, the final Softmax output is defined as follows:

Y = Softmax(W ([r;x; y; z]) + b)

where Y ∈ R|C|, |C| is the number of classes and x, y, z are the imaginary compo-

nents. Similarly for sequence loss (for sequence transduction problems), the same

can be also done.
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Parameter Initialization It is intuitive that specialized initialization schemes

ought to be devised for Quaternion representations and their modules [137, 270].

w = |w|(cos(θ) + q/imag sin(θ)

where q/imag is the normalized imaginary constructed from uniform randomly sam-

pling from [0, 1]. θ is randomly and uniformly sampled from [−π, π]. However,

our early experiments show that, at least within the context of NLP applications,

this initialization performed comparable or worse than the standard Glorot ini-

tialization. Hence, we opt to initialize all components independently with Glorot

initialization.

11.3 Experiments

This section describes our experimental setup across multiple diverse NLP tasks.

All experiments were run on NVIDIA Titan X hardware.

Our Models On pairwise text classification, we benchmark the Quaternion At-

tention model (Q-Att), testing the ability of Quaternion models on pairwise repre-

sentation learning. On all the other tasks, such as machine translation and subject-

verb agreement, we evaluate Quaternion Transformers. We evaluate two variations

of Transformers, full and partial. The full setting converts all linear transforma-

tions into Quaternion space and is approximately 25% of the actual Transformer

size. The second setting (partial) only reduces the linear transforms at the self-

attention mechanism. Tensor2Tensor2 is used for Transformer benchmarks, which

uses its default hyperparameters and encoding for all experiments.

11.3.1 Pairwise Natural Language Understanding

We evaluate our proposed Quaternion Attention (Q-Att) model on pairwise text

classification tasks. This task involves predicting a label or ranking score for sen-

tence pairs. We use a total of seven datasets from problem domains as follows:

2https://github.com/tensorflow/tensor2tensor.

https://github.com/tensorflow/tensor2tensor
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• Natural language inference (NLI) - This task is concerned with deter-

mining if two sentences entail or contradict each other. We use SNLI [6],

SciTail [271], MNLI [272] as benchmark datasets.

• Question answering (QA) - This task involves learning to rank question-

answer pairs. We use WikiQA [109] which comprises QA pairs from Bing

Search.

• Paraphrase detection - This task involves detecting if two sentences are

paraphrases of each other. We use Tweets [273] dataset and the Quora para-

phrase dataset [51].

• Dialogue response selection (RS) - This is a response selection task that

tries to select the best response given a message. We use the Ubuntu dialogue

corpus, UDC [56].

Implementation Details We implement Q-Att in TensorFlow [274], along with

the Decomposable Attention baseline [264]. Both models optimize the cross en-

tropy loss (e.g., binary cross entropy for ranking tasks such as QA and RS).

Models are optimized with Adam optimizer with the learning rate tuned amongst

{0.001, 0.0003} and the batch size tuned amongst {32, 64}. Embeddings are initial-

ized with GloVe [187]. For Q-Att, we use an additional transform layer to project

the pre-trained embeddings into Quaternion space. The measures used are gener-

ally the accuracy measure (for NLI and paraphrase detection tasks) and ranking

measures (MAP/MRR/Top-1) for ranking tasks (QA and RS).

Baselines and Comparison We use the Decomposable Attention model as a

baseline, adding [ai; bi; ai � bi; ai − bi] before the compare3 layers since we found

this simple modification to increase performance. This also enables fair comparison

with our variation of Quaternion Attention which uses Hamilton product over

element-wise multiplication. We denote this as DeAtt. We evaluate at a fixed

representation size of d = 200 (equivalent to d = 50 in Quaternion space). We also

include comparisons at equal parameterization (d = 50 and approximately 200K

parameters) to observe the effect of Quaternion representations.

3This follows the matching function of [275].
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Table 11.1: Results for pairwise NLU tasks.

Task NLI QA Paraphrase RS

Measure Accuracy MAP/MRR Accuracy Top-1

Model SNLI SciTail MNLI WikiQA Tweet Quora UDC # θ

DeAtt d=50 83.4 73.8 69.9/70.9 66.0/67.1 77.8 82.2 48.7 200K
DeAtt d=200 86.2 79.0 73.6/73.9 67.2/68.3 80.0 85.4 51.8 700K

Q-Att d=50 85.4 79.6 72.3/72.9 66.2/68.1 80.1 84.1 51.5 200K

Table 11.2: Results for sentiment analysis.

Model IMDb SST # Params
Transformer 82.6 78.9 400K

Quaternion Transformer (full) 83.9 (+1.3%) 80.5 (+1.6%) 100K (-75.0%)
Quaternion Transformer (partial) 83.6 (+1.0%) 81.4 (+2.5%) 300K (-25.0%)

Results Table 11.1 reports results on seven different and diverse datasets. We

observe that a tiny Q-Att model (d = 50) achieves comparable (or occasionally

marginally better or worse) performance compared to DeAtt (d = 200), gaining

a 68% parameter savings. The results actually improve on certain datasets (2/7)

and are comparable (often less than a percentage point difference) compared with

the d = 200 DeAtt model. Moreover, we scaled the parameter size of the DeAtt

model to be similar to the Q-Att model and found that the performance degrades

quite significantly (about 2% − 3% lower on all datasets). This demonstrates the

quality and benefit of learning with Quaternion space.

11.3.2 Sentiment Analysis

We evaluate on the task of document-level sentiment analysis which is a binary

classification problem.

Implementation Details We compare our proposed Quaternion Transformer

against the vanilla Transformer. In this experiment, we use the tiny Transformer

setting in Tensor2Tensor with a vocab size of 8K. We use two datasets, namely

IMDb [276] and Stanford Sentiment Treebank (SST) [228].
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Table 11.3: Results for neural machine translation.

BLEU

Model En-Vi En-Ro En-Et # Params

Transformer Base 28.4 22.8 14.1 44M
Quaternion Transformer (full) 28.0 18.5 13.1 11M (-75%)

Quaternion Transformer (partial) 30.9 22.7 14.2 29M (-32%)

Results Table 11.2 reports results of the sentiment classification task on IMDb

and SST. We observe that both the full and partial variations of Quaternion Trans-

formers outperform the base Transformer. We observe that Quaternion Trans-

former (partial) obtains a +1.0% lead over the vanilla Transformer on IMDb and

+2.5% on SST. This is while having a 24.5% saving in parameter cost. Finally,

the full Quaternion version leads by +1.3%/1.6% gains on IMDb and SST respec-

tively while maintaining a 75% reduction in parameter cost. This supports our

core hypothesis of improving accuracy while saving parameter costs.

11.3.3 Neural Machine Translation

We evaluate our proposed Quaternion Transformer against vanilla Transformer on

three datasets on this neural machine translation (NMT) task. More concretely,

we evaluate on IWSLT 2015 English Vietnamese (En-Vi), WMT 2016 English-

Romanian (En-Ro) and WMT 2018 English-Estonian (En-Et).

Implementation Details We implement models in Tensor2Tensor and trained

for 50k steps for both models. We use the default base single GPU hyperparameter

setting for both models and average checkpointing. Note that our goal is not to

obtain state-of-the-art models but to fairly and systematically evaluate both vanilla

and Quaternion Transformers.

Results Table 11.3 reports the results on neural machine translation. Parameter

size excludes word embeddings. Our proposed Quaternion Transformer achieves

comparable or higher performance with only 67.9% parameter costs of the base

Transformer model.
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On the IWSLT’15 En-Vi dataset, the partial adaptation of the Quaternion Trans-

former outperforms (+2.5%) the base Transformer with a 32% reduction in param-

eter cost. On the other hand, the full adaptation comes close (−0.4%) with a 75%

reduction in parameter cost. On the WMT’16 En-Ro dataset, Quaternion Trans-

formers do not outperform the base Transformer. We observe a −0.1% degrade in

performance on the partial adaptation and −4.3% degrade on the full adaptation

of the Quaternion Transformer. However, we note that the drop in performance

with respect to parameter savings is still quite decent, e.g., saving 32% parameters

for a drop of only 0.1 BLEU points. The full adaptation loses out comparatively.

On the WMT’18 En-Et dataset, the partial adaptation achieves the best result

with 32% less parameters. The full adaptation, comparatively, only loses by 1.0

BLEU score from the original Transformer yet saving 75% parameters.

WMT’14 En-De Quaternion Transformer achieves a BLEU score of 26.42/25.14

for partial/full settings respectively on the standard WMT’14 En-De benchmark.

This is using a single GPU trained for 1M steps with a batch size of 8192.

11.3.4 Mathematical Language Understanding

We include evaluations on a newly released mathematical language understanding

(MLU) dataset [277]. This dataset is a character-level transduction task that aims

to test a model’s compositional reasoning capabilities. For example, given an input

x = 85, y = −523 and x ∗ y the model strives to decode an output of −44455.

Several variations of these problems exist, mainly switching and introduction of

new mathematical operators.

Implementation Details We train Quaternion Transformer for 100K steps us-

ing the default Tensor2Tensor setting following the original work [277]. We use

the tiny hyperparameter setting. Similar to NMT, we report both full and partial

adaptations of Quaternion Transformers. Baselines are reported from the original

work as well, which include comparisons from Universal Transformers [263] and

ACT Universal Transformers. The evaluation measure is accuracy per sequence,

which counts a generated sequence as correct if and only if the entire sequence is

an exact match.
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Table 11.4: Results for mathematical language understanding (MLU).

Model Acc / Seq # Params
Universal Transformer 78.8 -
ACT U-Transformer 84.9 -

Transformer 76.1 400K
Quaternion Transformer (full) 78.9 (+2.8%) 100K (-75%)

Quaternion Transformer (partial) 84.4 (+8.3%) 300K ( -25%)

Table 11.5: Results for subject-verb agreement (SVA).

Model Acc Params
Transformer 94.8 400K

Quaternion (full) 94.7 100K
Quaternion (partial) 95.5 300K

Results Table 11.4 reports our experimental results on the MLU dataset. We

observe a modest +7.8% accuracy gain when using the Quaternion Transformer

(partial) while saving 24.5% parameter costs. Quaternion Transformer outperforms

Universal Transformer and marginally is outperformed by Adaptive Computation

Universal Transformer (ACT U-Transformer) by 0.5%. On the other hand, a full

Quaternion Transformer still outperforms the base Transformer (+2.8%) with 75%

parameter saving.

11.3.5 Subject Verb Agreement

Additionally, we compare our Quaternion Transformer on the subject-verb agree-

ment task [278]. The task is a binary classification problem, determining if a

sentence, e.g., ‘The keys to the cabinet .’ follows by a plural/singular.

Implementation We use the Tensor2Tensor framework, training Transformer

and Quaternion Transformer with the tiny hyperparameter setting with 10k steps.

Results Table 11.5 reports the results on the SVA task. Results show that

Quaternion Transformers perform equally (or better) than vanilla Transformers.

On this task, the partial adaptation performs better, improving Transformers by

+0.7% accuracy while saving 25% parameters.



Chapter 11 Quaternion Representations 193

11.4 Summary

This chapter advocates for lightweight and efficient neural NLP via Quaternion

representations. More concretely, we proposed two models - Quaternion Attention

model and Quaternion Transformer. We evaluate these models on eight different

NLP tasks and a total of thirteen datasets. Across all datasets, the Quaternion

model achieves comparable performance while reducing parameter size. All in all,

we demonstrated the utility and benefits of incorporating Quaternion algebra in

state-of-the-art neural models. We believe that this direction paves the way for

more efficient and effective representation learning in NLP.
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Conclusion

This chapter concludes the thesis and provides a retrospective summary of the

proposed contributions. In this thesis, we presented novel state-of-the-art models

for a series of natural language understanding (NLU) tasks such as natural lan-

guage inference (NLI), machine reading comprehension (MRC) and retrieval-based

NLU. We also proposed novel building blocks (e.g., encoding units) and embedding

spaces for training efficient NLU models. Finally, we go on to elaborate on possible

potential research directions.

12.1 Overall Summary

On well-contested international benchmarks for language inference (e.g., SNLI,

MultiNLI), our models (e.g., CAFE, CSRAN) have held state-of-the-art perfor-

mance on these leaderboards for extended periods of time, effectively pushing and

advancing research in this field of language understanding. CAFE is largely based

on factorized attention, using a newly proposed technique which we call alignment

factorization and an overall paradigm, Compare-Propagate. These enable efficient

computation due to the compression of alignment/attention and outperforms all

existing competitors with fewer parameter costs. Additionally, CSRAN presents an

extended deep version of CAFE, but proposing Multi-level Attention Refinement

(MAR) and Co-Stack Residual Affinity (CSRA) mechanisms for further improv-

ing the results. Additionally, we also proposed Multi-Cast Attention Networks

194
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(MCAN), which incorporates multi-casting of diverse attention flavors. MCAN

achieves competitive performance on a myriad of retrieval-based NLU problems.

On Machine Reading Comprehension, our proposed DecaProp model similarly

holds the state-of-the-art on several benchmark tasks such as NewsQA and Narra-

tiveQA. DecaProp operates on a BAC (Bidirectional Attention Connector) module,

chaining the entire network up with residual attention features. DecaProp achieves

highly performant results and outperforming existing state-of-the-art models by up

to 10% accuracy.

Additionally, we presented a state-of-the-art recommender system that is largely

inspired by NLU-based research, leveraging user reviews for reasoning and recom-

mendation. The proposed Multi-Pointer Co-Attention Network is a hierarchical

model that reads and reasons over user review banks. We show that a two-layered

attention-based reasoning model is capable of not only performing better but also

producing explainable results. We analyze the model outputs, and show that dif-

ferent domains have different evidence aggregation patterns. This sheds light into

the behavior of deep learning models on these real-world applications.

We then studied and presented two new sequential inductive biases for natural

language understanding, e.g., Dilated Composition Units (DCU) and Recurrently

Controlled Recurrent Networks (RCRN) which have demonstrated success across a

myriad of NLU and NLP benchmarks. We show that designing specialized encoders

brings about significant benefits as opposed to using off-the-shelf components such

as GRU/LSTM units. More concretely, DCUs are faster due to non-reliant on auto-

regressive computation. However, they gain expressiveness from multi-granular

reasoning over sequences. On the other hand, RCRN learns powerful encoders by

parameterizing recurrent gating functions with additional RNN units.

Finally, we study two novel inductive biases for making NLU models efficient. Hy-

perbolic representation, which is a naturally hierarchically structured non-Euclidean

space. We show that simple, feed-forward networks trained in hyperbolic space may

outperform advanced competitor models. We also studied Hypercomplex Quater-

nion representation which enables parameter savings by Quaternion weight sharing.

We proposed Quaternion models of language, attaining competitive performance

with approximately four times fewer parameters. While pursuing performance is
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a great direction, we also advocate for lightweight neural models that are suitable

for industrial and practical use.

12.2 Future Directions and Challenges

This section provides several future directions that are exciting. While there might

be no principled solution to any of the following, many of these future directions

remain as interesting goal posts for AI research in language understanding.

12.2.1 Multi-document Reasoning and Understanding

Although the works that we presented in this thesis have achieved stellar perfor-

mance on many standard benchmarks [45, 46, 87], we believe it is good to inves-

tigate specialized inductive bias for enabling reasoning over multiple documents.

In current NLU or QA setups, the reasoning is often constrained to sentence pairs

or document-query pairs. To this end, the full potential of learning document-

document relations is under-explored. We believe the study of specialized atten-

tion modules would go a long way in pushing this direction. Notably, while our

proposed Multi-Pointer Co-Attention Networks [4] acknowledges that user reviews

should be modeled independently and hierarchically, there might be still room for

improvement in the introspection aspect. Several new recent works have proposed

new challenges pertaining to this aspect [279, 280].

12.2.2 Conversational Language Understanding

This thesis presents several comprehensive experiments on a multitude of NLU

tasks. However, conversations and dialogue remain central to society and human

communication. Conversations may be informal with a huge requirement for mod-

eling co-reference or user information. To this end, integrating ideas from NLU to

this domain area might be an interesting future direction. This can be also inter-

preted as a form of multi-document reasoning in which each dialogue line can be

treated as a single document. Recent challenges have started pushing boundaries of
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MRC into this conversational setting [35] which makes it an exciting future direc-

tion. This would have immense applications, especially pertaining to the chatbot

and personal assistant industry.

12.2.3 Efficient Models for Reading Long Documents

A major problem in MRC and NLU models that reading and comprehending long

documents are extremely impossible and challenging. A long document may mani-

fest in many domains such as narratives, web documents, or legal documents. The

challenges may largely stem from the hardware inability to fit several thousand

tokens into memory and reason over them. On the other hand, attention meth-

ods may face bottleneck, distributing their relative weights too sparsely across too

many possible values. Existing self-attention [24] or alignment techniques, typically

suffer from quadratic time and space complexity. This aggravates the problem of

processing long documents. As such, this remains a highly technical challenge for

future work with many areas for innovation.

12.2.4 Language Understanding for Fact Verification

The benefit of designing many general purpose neural modules for NLU is that we

are able to simply utilize them in new applications. With the prevalent problem

of misinformation and fake news, it is certainly a promising direction to enable

fact verification via language understanding. More often than not, a fine-grained

understanding of facts (within documents) is required for making complex decisions

pertaining to misinformation. We hypothesize that NLU modules and models will

play a huge role in detecting and eliminating misinformation.
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Hermann, Gábor Melis, and Edward Grefenstette. The narrativeqa reading

comprehension challenge. arXiv preprint arXiv:1712.07040, 2017. 9, 21, 75,

82, 128, 136, 137, 140, 149

[65] Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C. Phan, Xingdi

Yuan, Jinfeng Rao, Siu Cheung Hui, and Aston Zhang. Simple and effective

curriculum pointer-generator networks for reading comprehension over long

narratives. In Proceedings of the ACL 2019, 2019. 9, 12, 89

[66] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. Multi-pointer co-attention

networks for recommendation. In Proceedings of the 24th ACM SIGKDD In-

ternational Conference on Knowledge Discovery & Data Mining, pages 2309–

2318. ACM, 2018. 10, 12, 105

[67] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. Multi-granular sequence en-

coding via dilated compositional units for reading comprehension. In Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 2141–2151, Brussels, Belgium, October-November 2018.

Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/D18-1238. 10, 12, 126

http://doi.acm.org/10.1145/3219819.3220048
https://www.aclweb.org/anthology/D18-1238
https://www.aclweb.org/anthology/D18-1238


BIBLIOGRAPHY 206

[68] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. Recurrently controlled recur-

rent networks. In Advances in Neural Information Processing Systems, pages

4731–4743, 2018. 11, 12, 142

[69] Yi Tay, Aston Zhang, Anh Tuan Luu, Jinfeng Rao, Shuai Zhang, Shuohang

Wang, Jie Fu, and Siu Cheung Hui. Lightweight and efficient neural natural

language processing with quaternion networks. In Proceedings of the ACL

2019, 2019. 12, 178

[70] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016.

15

[71] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into

Deep Learning. 2019. http://www.d2l.ai. 15

[72] Bill Maccartney. Natural Language Inference. PhD thesis, Stanford, CA,

USA, 2009. AAI3364139. 15

[73] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising

textual entailment challenge. In Proceedings of the First International Con-

ference on Machine Learning Challenges: Evaluating Predictive Uncertainty

Visual Object Classification, and Recognizing Textual Entailment, MLCW’05,

pages 177–190, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-33427-

0, 978-3-540-33427-9.

[74] Bill MacCartney and Christopher D. Manning. Modeling semantic contain-

ment and exclusion in natural language inference. In Proceedings of the 22Nd

International Conference on Computational Linguistics - Volume 1, COLING

’08, pages 521–528, Stroudsburg, PA, USA, 2008. Association for Computa-

tional Linguistics. ISBN 978-1-905593-44-6.

[75] Adrian Iftene and Alexandra Balahur-Dobrescu. Hypothesis transformation

and semantic variability rules used in recognizing textual entailment. In Pro-

ceedings of the ACL-PASCAL Workshop on Textual Entailment and Para-

phrasing, RTE ’07, pages 125–130, Stroudsburg, PA, USA, 2007. Association

for Computational Linguistics. 15

[76] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana

Inkpen. Enhanced LSTM for natural language inference. In Proceedings of

http://www.d2l.ai


BIBLIOGRAPHY 207

the 55th Annual Meeting of the Association for Computational Linguistics,

ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,

pages 1657–1668, 2017. doi: 10.18653/v1/P17-1152. 16, 29, 41, 42, 43, 47,

49, 52, 58, 154, 155

[77] Shuohang Wang and Jing Jiang. Learning natural language inference with

LSTM. In NAACL HLT 2016, The 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, San Diego California, USA, June 12-17, 2016, pages 1442–

1451, 2016. 43

[78] Hong Yu and Tsendsuren Munkhdalai. Neural semantic encoders. In Proceed-

ings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017,

Volume 1: Long Papers, pages 397–407, 2017. 16

[79] Shuohang Wang and Jing Jiang. A compare-aggregate model for matching

text sequences. CoRR, abs/1611.01747, 2016. 16, 18, 134

[80] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective

matching for natural language sentences. In Proceedings of the Twenty-

Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,

Melbourne, Australia, August 19-25, 2017, pages 4144–4150, 2017. doi:

10.24963/ijcai.2017/579. 16, 18, 32, 41, 43, 63, 136

[81] Yichen Gong, Heng Luo, and Jian Zhang. Natural language inference over

interaction space. CoRR, abs/1709.04348, 2017. 16, 32, 41, 43, 49

[82] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi

Zhang. Disan: Directional self-attention network for rnn/cnn-free language

understanding. CoRR, abs/1709.04696, 2017. 17, 43

[83] Jihun Choi, Kang Min Yoo, and Sang-goo Lee. Unsupervised learning of task-

specific tree structures with tree-lstms. arXiv preprint arXiv:1707.02786,

2017. 17, 43, 143, 144, 154

[84] Tushar Khot, Ashish Sabharwal, and Peter Clark. Scitail: A textual entail-

ment dataset from science question answering. In AAAI, 2018. 17, 41, 42,

44, 49, 149, 154, 155



BIBLIOGRAPHY 208

[85] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.

Learned in translation: Contextualized word vectors. In Advances in Neural

Information Processing Systems, pages 6297–6308, 2017. 17, 42, 43, 86, 142,

143, 144, 150, 152, 153

[86] Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christo-

pher D. Manning, and Christopher Potts. A fast unified model for parsing and

sentence understanding. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics, ACL 2016, August 7-12, 2016,

Berlin, Germany, Volume 1: Long Papers, 2016. 17

[87] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage

challenge corpus for sentence understanding through inference. CoRR,

abs/1704.05426, 2017. 17, 41, 44, 46, 196

[88] Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei

Zhang, Shiyu Chang, Gerald Tesauro, Bowen Zhou, and Jing Jiang. R3:

Reinforced reader-ranker for open-domain question answering. arXiv preprint

arXiv:1709.00023, 2017. 18, 20, 82

[89] Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. Denoising distantly

supervised open-domain question answering. In Proceedings of the 56th An-

nual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), volume 1, pages 1736–1745, 2018. 18, 19, 90

[90] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional

neural network architectures for matching natural language sentences. In

Advances in Neural Information Processing Systems 27: Annual Conference

on Neural Information Processing Systems 2014, 2014. 18, 62, 64

[91] Yi Tay, Minh C. Phan, Anh Tuan Luu, and Siu Cheung Hui. Learning to

rank question answer pairs with holographic dual LSTM architecture. In

Proceedings of the 40th International ACM SIGIR Conference on Research

and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August

7-11, 2017, pages 695–704, 2017. doi: 10.1145/3077136.3080790. 18

[92] Di Wang and Eric Nyberg. A long short-term memory model for answer

sentence selection in question answering. In Proceedings of the 53rd Annual



BIBLIOGRAPHY 209

Meeting of the Association for Computational Linguistics and the 7th In-

ternational Joint Conference on Natural Language Processing of the Asian

Federation of Natural Language Processing, ACL 2015, July 26-31, 2015,

Beijing, China, Volume 2: Short Papers, pages 707–712, 2015. 18

[93] Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures for

learning sentence similarity. In Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, 2016, 2016. 18

[94] Gehui Shen, Yunlun Yang, and Zhi-Hong Deng. Inter-weighted alignment

network for sentence pair modeling. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, EMNLP 2017, Copen-

hagen, Denmark, September 9-11, 2017, pages 1179–1189, 2017. 18, 52, 63

[95] Xipeng Qiu and Xuanjing Huang. Convolutional neural tensor network ar-

chitecture for community-based question answering. In Proceedings of the

Twenty-Fourth International Joint Conference on Artificial Intelligence, IJ-

CAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1305–1311,

2015. 18, 62, 167

[96] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi

Cheng. A deep architecture for semantic matching with multiple positional

sentence representations. In Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.,

pages 2835–2841, 2016. 18, 62

[97] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi

Cheng. Text matching as image recognition. 2016. 18, 62

[98] Hua He, Kevin Gimpel, and Jimmy J. Lin. Multi-perspective sentence

similarity modeling with convolutional neural networks. In Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1576–1586,

2015. 18, 63, 167, 173

[99] Jinfeng Rao, Wei Yang, Yuhao Zhang, Ferhan Ture, and Jimmy Lin. Multi-

perspective relevance matching with hierarchical convnets for social media

search, 2018. 18



BIBLIOGRAPHY 210
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[247] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in

complex networks. Physical Review E, 67(2):026112, 2003. 159

[248] Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vah-
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