
Compositional De-Attention Networks

†Yi Tay,]Luu Anh Tuan, \Aston Zhang, ♣Shuohang Wang, ∗Siu Cheung Hui
†,∗Nanyang Technological University, Singapore

]MIT CSAIL, \Amazon AI
♣Microsoft Research

ytay017@e.ntu.edu.sg

Abstract

Attentional models are distinctly characterized by their ability to learn relative
importance, i.e., assigning a different weight to input values. This paper proposes
a new quasi-attention that is compositional in nature, i.e., learning whether to
add, subtract or nullify a certain vector when learning representations. This is
strongly contrasted with vanilla attention, which simply re-weights input tokens.
Our proposed Compositional De-Attention (CoDA) is fundamentally built upon the
intuition of both similarity and dissimilarity (negative affinity) when computing
affinity scores, benefiting from a greater extent of expressiveness. We evaluate
CoDA on six NLP tasks, i.e. open domain question answering, retrieval/ranking,
natural language inference, machine translation, sentiment analysis and text2code
generation. We obtain promising experimental results, achieving state-of-the-art
performance on several tasks/datasets.

1 Introduction

Not all inputs are created equal. This highly intuitive motivator, commonly referred to as ‘attention’,
forms the bedrock of many recent and successful advances in deep learning research [Bahdanau et al.,
2014, Parikh et al., 2016, Seo et al., 2016, Vaswani et al., 2017]. To this end, the Softmax operator
lives at it’s heart, signifying the importance of learning relative importance as a highly effective
inductive bias for many problem domains and model architectures.

This paper proposes a new general purpose quasi-attention method. Our method is ‘quasi’ in the
sense that it behaves like an attention mechanism, albeit with several key fundamental differences.
Firstly, instead of learning relative importance (weighted sum), we learn a compositional pooling
of tokens, deciding whether to add, subtract or delete an input token. Since our method learns to
flip/subtract tokens, deviating from the original motivation of attention, we refer to our method as a
quasi-attention method. Secondly, we introduce a secondary de-attention (deleted attention) matrix,
finally learning a multiplicative composition of similarity and dissimilarity. We hypothesize that
more flexible design can lead to more expressive and powerful models which will arrive at better
performance.

In order to achieve this, we introduce two technical contributions. The first, is a dual affinity scheme,
which introduces a secondary affinity matrix N , in addition to the original affinity matrix E. The
affinity matrix E, commonly found in pairwise [Parikh et al., 2016] or self-attentional [Vaswani et al.,
2017] models, learns pairwise similarity computation between all elements in a sequence (or two
sequences), i.e., eij = a>i bj . Contrary to E, our new N matrix is learned a dissimilarity metric such
as negative L1 distance, providing dual flavours of pairwise composition.

Secondly, we introduce a compositional mechanism which composes tanh(E) with sigmoid(N)
to form the quasi-attention matrix M . In this case, the first term tanh(E) controls the adding and
subtracting of vectors while the secondary affinityN can be interpreted as a type of gating mechanism,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

erasing unnecessary pairwise scores to zero when desired. The motivation for using dissimilarity as a
gate is natural, serving as a protection against over-relying on raw similarity, i.e, if dissimilarity is
high then the negative component learns to erase the positive affinity score.

Finally, the quasi-attention matrix is then utilized as per standard vanilla attention models, pooling
across a sequence of vectors for learning attentional representations. More concretely, this new
quasi-attention mechanism is given the ability to express arithmetic operations [Trask et al., 2018]
when composing vectors, i.e., compositional pooling. As a general-purpose and universal neural
component, our CoDA mechanism can be readily applied to many state-of-the-art neural models such
as models that use pairwise attention or self-attention-based transformers.

All in all, the prime contributions of this work are as follows:

• We introduce Compositional De-Attention (CoDA), a form of quasi-attention method. Our
CoDA mechanism is largely based on two new concepts, (1) dual affinity matrices and
(2) compositional pooling, distinguishing itself from all other attention mechanisms in the
literature.

• Our CoDA method decouples the Softmax operator with standard attention mechanisms
and puts forward a new paradigm for attentional pooling in neural architectures. To the best
of our knowledge, this is the first work that explores the usage of Softmax-less attention
mechanisms. As a by-product, we also show that going Softmax-less could also be a viable
choice even in attentional models.

• CoDA enables a greater extent of flexibility in composing vectors during the attentional
pooling process. We imbue our model with the ability to subtract vectors (not only relatively
weight them).
• We conduct extensive experiments on a myriad of NLP tasks such as open domain question

answering, ranking, natural language inference, machine translation, sentiment analysis and
text2code generation. We obtain reasonably promising results, demonstrating the utility
of the proposed CoDA mechanism, outperforming vanilla attention more often than not.
Moreover, CoDA achieves state-of-the-art on several tasks/datasets.

2 Compositional De-Attention Networks (CoDA)

This section introduces the proposed CoDA method.

2.1 Input Format and Pairwise Formulation

Our proposed CoDA method accepts two input sequences A ∈ R`a×d and B ∈ R`b×d, where `a, `b
are lengths of sequences A,B repectively and d is the dimensionaity of the input vectors, and returns
pooled representations which are of equal dimensions. Note that CoDA is universal in the sense that
it can be applied to both pairwise (cross) attention [Parikh et al., 2016, Seo et al., 2016] as well as
single sequence attention. In the case of single sequence attention, A and B are often referred to the
same sequence (i.e., self-attention [Vaswani et al., 2017]).

2.2 Dual Affinity Computation

We compute the pairwise affinity between each element in A and B via:

Eij = α FE(ai)FE(bj)
> (1)

which captures the pairwise similarity between each element in A with each element of B. In this
case, FE(.) is a parameterized function such as a linear/nonlinear projection. Moreover, α is a scaling
constant and a non-negative hyperparameter which can be interpreted as a temperature setting that
controls saturation. Next, as a measure of negative (dissimilarity), we compute:

Nij = −β ||FN (ai)− FN (bj)|||`1 (2)

where FN (.) is a parameterized function, β is a scaling constant, and `1 is the L1 Norm. In practice,
we may share parameters of FE(.) and FN (.). Note that Nij ∈ R is a scalar value and the affinity
matrix N has equal dimension with the affinity matrix E. We hypothesize that capturing a flavour of

2

dissimilarity (subtractive compositionality) is crucial in attentional models. The rationale for using
the negative distance is for this negative affinity values to act as a form of gating (as elaborated
subsequently).

2.3 Compositional De-Attention Matrix

In the typical case of vanilla attention, Softmax is applied onto the matrix E ∈ R`A×`B row-wise
and column-wise, normalizing the matrix. Hence, multiplying the normalized matrix of E with the
original input sequence can be interpreted as a form of attentional pooling (learning to align), in
which each element of A pools all relevant information across all elements of B. For our case, we
use the following equation:

M = tanh(E)� sigmoid(N) (3)

where M is the final (quasi)-attention matrix in our CoDA mechanism and � is the element-wise
multiplication between the two matrices.

Centering of N. Since N is constructed by the negative L1 distance, it is clear that the range of
sigmoid(N) ∈ [0, 0.5]. Hence, in order to ensure that sigmoid(N) lies in [0, 1], we center the
matrix N to have a zero mean:

N → N −Mean(N) (4)

Intuitively, by centering N to zero mean, we are also able to ensure and maintain it’s ability to both
erase and retain values in tanh(E) since sigmoid(N) now saturates at 0 and 1, behaving more like
a gate.

Scaling of sigmoid(N). A second variation, as an alternative to centering is to scale sigmoid(N)
by 2, ensuring that its range fall within [0, 1] instead of [0, 0.5].

M = tanh(E)� (2 ∗ sigmoid(N)) (5)

Empirically, we found that this approach works considerably well as well.

Centering of E. Additionally, there is no guarantee that E contains values both positive and
negative. Hence, in order to ensure that tanh(E) is able to effectively express subtraction (negative
values), we may normalize E to have zero mean:

E → E −Mean(E) (6)

This normalization/centering can be interpreted as a form of inductive bias. Without it, we have no
guarantee if the model converges to a solution where all values are only E > 0 or E < 0. Naturally,
we also observe that the scalar value α in equation 1 acts like a temperature hyperparameter and
when α is large, the values of tanh(E) will saturate towards {−1, 1}.

Intuition Note that since the distance value takes a summation over vector elements, the value of
sigmoid(N) ∈ [0, 1] (centered) will saturate towards 0 or 1. Hence, this encodes a strong prior for
either erasing (a.k.a ‘de-attention’) or keeping the entire scores from E. Contrary to typical attention
mechanism,M is biased towards values {−1, 0, 1} since sigmoid(N) is biased towards {0, 1}whilst
tanh(E) is biased towards {−1, 1}. Intuitively, N (the negative affinity matrix) controls the deletion
operation while E controls whether we want to add or subtract a vector.

Additionally, we can consider that sigmoid(N) acts as affinity gates. A higher dissimilarity (denoted
by a large negative distance) will ‘erase’ the values on the main affinity matrix tanh(E). The choice
of other activation functions and their compositions will be discussed in Section ??.

Temperature We introduced hyperparameters α, β in earlier sections that control the magnitude
of E and N . Intuitively, these hyperparameters control and influence the temperature of tanh and
sigmoid functions. In other words, a high value of α, β will enforce a hard form of compositional
pooling. For most cases, setting α = 1, β = 1 may suffice. Note that the dimensionality of the vector
contributes to the hard-ness of our method since this results in large values of E,N matrices, this
case, α, β may be set to ≤ 1 to prevent M from being too hard.

3

Figure 1: Illustration of our proposed Compositional De-Attention (CoDA) affinity matrix composi-
tion. Red represents positive values and blue represents negative values. White represents close to
zero values.

2.4 Compositional Pooling

After which, we apply M (the quasi-attention matrix) to input sequences A and B.

A′ = MB and B′ = M>A (7)

where A′ ∈ R`A×d and B′ ∈ R`B×d are the compositionally manipulated representations of A and
B respectively. In the case of A′ , each element Ai in A scans across the sequence B and decides1

whether to include/add (+1), subtract (−1) or delete (×0) the tokens in B. Similar intuition is applied
to B′ where each element in B scans across the sequence A and decides to add, subtract or delete the
tokens in A. Intuitively, this allows for rich and expressive representations, unlike typical attentional
pooling methods that softly perform weighted averages over a sequence.

2.5 Incorporating CoDA to Existing Models

In this section, we discuss various ways how CoDA may be used and incorporated into existing neural
models.

CoDA Cross-Attention Many models for pairwise sequence problems require a form of cross
attention. In this case, CoDA is applied:

A′, B′ = CoDA(A,B) (8)

whereA ∈ R`A×d, B ∈ R`B×d are two input sequences (e.g., document-query or premise-hypothesis
pairs). A′ ∈ R`A×d,B′ ∈ R`B×d are compositionally aligned representations ofA andB respectively.
Next, we use an alignment function,

F = [F (A′, A);F (B′, B)] (9)

to learn cross-sentence feature representations. Note that F (.) may be any parameterized function
such as RNNs, MLPs or even simple pooling function. [;] is the concatenation operator.

CoDA Transformer Transformers [Vaswani et al., 2017] adopt self-attention mechanisms, which
can be interpreted as cross-attention with respect to the same sequence. The original transformer2

1We emphasize that this is still done in a soft manner.
2We find that, for some tasks, removing the scaling factor of 1√

dk
works better for our CoDA mechanism.

4

equation of A = softmax(QK>
√
dk

)V now becomes:

A = (tanh(
QK>√
dk

)� sigmoid(
G(Q,K)√

dk
))V (10)

where G(.) is the negation of outer L1 distance between all rows of Q against all rows of K. We either
apply centering to (G(Q,K)√

dk
))V or 2 ∗ sigmoid(G(Q,K)√

dk
))V to ensure the value is in [0, 1]. Finally,

note that both affinity matrices are learned by transforming Q,K, V only once.

3 Experiments

We perform experiments on a variety of NLP tasks including open domain question answering,
retrieval/ranking, natural language inference, neural machine translation, sentiment analysis and
text2code generation. This section provides experimental details such as experimental setups, results
and detailed discussions.

3.1 Open Domain Question Answering

We evaluate CoDA on Open Domain QA. The task at hand is to predict an appropriate answer span
in a collection of paragraphs. We use well-established benchmarks, SearchQA [Dunn et al., 2017]
and Quasar-T [Dhingra et al., 2017]. Both dataset comprises of QA pairs with accompanying set
of documents retrieved by search engines. For this experiment, we use the recently proposed and
open source3 DecaProp [Tay et al., 2018] as a base model and replace the context-query attention
with our CoDA variation. We set the hyperparameters as closely to the original implementation as
possible since the key here is to observe if CoDA enhanced adaptation can improve upon the original
DecaProp. As competitors, we compare with the latest [Das et al., 2019], a sophisticated multi-step
reasoner specially targeted at open domain QA, as well as the canonical R3 model [Wang et al.,
2017], AQA [Buck et al., 2017] and BiDAF [Seo et al., 2016].

Quasar-T SearchQA
Model EM F1 EM F1

GA 26.4 26.4 - -
BiDAF [Seo et al., 2016] 25.9 28.5 28.6 34.6
AQA [Buck et al., 2017] - - 38.7 45.6

R3 Reader-Ranker [Wang et al., 2017] 34.2 40.9 49.0 55.3
Multi-step-reasoner [Das et al., 2019] 40.6 47.0 56.3 61.4

DecaProp [Tay et al., 2018] 38.6 46.9 56.8 63.6
DecaProp + CoDA (Ours) 41.3 49.7 57.2 63.9

Table 1: Experimental results on Open Domain Question Answering. DecaProp + CoDA achieves
state-of-the-art performance on both datasets.

Results Table 1 reports the results on Open Domain QA. Most importantly, we find that CoDA
is able to reasonably improve upon the base DecaProp model on the Quasar-T dataset (+2.7%)
while marginally improving performance on the SearchQA dataset. Notably, DecaProp + CoDA also
exceeds specialized open domain QA models such as the recent Multi-step reasoner [Das et al., 2019]
and achieves state-of-the-art performance on both datasets.

3.2 Retrieval and Ranking

We evaluate CoDA on a series of retrieval and ranking tasks. More concretely, we use well-established
answer retrieval datasets (TrecQA [Wang et al., 2007] and WikiQA [Yang et al., 2015]) along with
response selection dataset (Ubuntu dialogue corpus [Lowe et al., 2015]). These datasets are given
a question-answer or message-response pair and are tasked to ranked the answer/responses to how
likely they match the question.

3https://github.com/vanzytay/NIPS2018_DECAPROP.

5

https://github.com/vanzytay/NIPS2018_DECAPROP

For this experiment, we use a competitive baseline, DecompAtt [Parikh et al., 2016], as the base
building block for our experiments. We train DecompAtt in pointwise model for ranking tasks with
binary Softmax loss. We report MAP/MRR for TrecQA/WikiQA and top-1 accuracy for Ubuntu
dialogue corpus (UDC). We train all models for 20 epochs, optimizing with Adam with learning rate
0.0003. Hidden dimensions are set to 200 following the original DecompAtt model. Batch size is set
to 64.

TrecQA WikiQA UDC
D-ATT 80.6/83.9 66.4/68.0 51.8
D-ATT+CoDA 80.0/84.5 70.5/72.4 52.5

Table 2: Experimental results on Retrieval and Ranking.

Results Table 2 reports our results on the retrieval and ranking task. D-ATT + CoDA outperforms
vanilla D-ATT for most of the cases. On WikiQA, we observe a +4% gain on both MRR and MAP
metrics. Performance gain on UDC and TrecQA (MRR) are marginal. Overall, the results on this
task are quite promising.

3.3 Natural Language Inference

The task of Natural Language Inference (NLI) is concerned with determining whether two sentences
entail or contradict each other. This task has commonly been associated with language understanding
in general. We use two datasets, SciTail [Khot et al., 2018] and the newly released Dialogue NLI
(DNLI) [Welleck et al., 2018]. Similar to the retrieval and ranking tasks, we use the DecompAtt
model as the base model. We use an identical hyperparameter setting as the retrieval and ranking
model but train all models for 50 epochs. We set the batch size to 32 for Scitail in lieu of a smaller
dataset size.

Scitail DNLI
D-ATT 82.0 88.2
D-ATT + CoDA 83.6 88.8

Table 3: Experimental results of accuracy on Natural Language Inference.

Results Table 3 reports the results of our experiments on NLI tasks. CoDA helps the base Decom-
pAtt on both datasets. Notably, DecompAtt + CoDA outperforms the state-of-the-art result of 88.2%
on the original DNLI dataset leaderboard in [Welleck et al., 2018].

3.4 Machine Translation

We evaluate CoDA-Transformer against vanilla Transformer on Machine Translation (MT) task.
In our experiments, we use the IWSLT’15 English-Vietnamese dataset. We implement CoDA-
Transformer in Tensor2Tensor4. We use the transformer_base_single_gpu setting and run the
model on a single TitanX GPU for 50K steps and using the default checkpoint averaging script.
Competitors include Stanford Statistical MT [Luong and Manning], traditional Seq2Seq + Attention
[Bahdanau et al., 2014], and Neural Phrase-based MT [Huang et al., 2017].

Model BLEU
Luong & Manning (2015) 23.30
Seq2Seq Attention 26.10
Neural Phrase-based MT 27.69
Neural Phrase-based MT + LM 28.07
Transformer 28.43
CoDA Transformer 29.84

Table 4: Experimental results on Machine Translation task using IWSLT’15 English-Vietnamese
dataset.

4https://github.com/tensorflow/tensor2tensor.

6

https://github.com/tensorflow/tensor2tensor

Results Table 4 reports the result on our MT experiments. We observe that CoDA improves the
base Transformer model by about +1.4% BLEU points on this dataset5. Notably, CoDA Transformer
also outperforms all other prior work on this dataset by a reasonable margin.

3.5 Sentiment Analysis

We compare CoDA-Transformer and Vanilla Transformer on both document-level and word-level
sentiment analysis. We use the IMDb sentiment dataset. We implement CoDA-Transformer in
Tensor2Tensor and compare using the tiny default hyperparameter setting for both models. We train
both models with 2000 steps.

Model Acc
Transformer 82.6
CoDA Transformer 83.3

Table 5: Experimental results on IMDb Sentiment Analysis.

Results We observe that CoDA-Transformer outperforms vanilla Transformer. Note that this
implementation uses Byte-pair Encoding/No pretrained vectors and therefore is not comparable with
all other works in literature that use this IMDb dataset.

3.6 Program Search / Text2Code Generation

We report additional experiments on language to code generation. We use the AlgoLisp dataset
from [Polosukhin and Skidanov, 2018], which is implementation of the problems in a Lisp-inspired
programming language. Each problem has 10 tests, where each test is input to be fed into the
synthesized program and the program should produce the expected output. We frame the problem as
a sequence transduction task.

Similar to other experiments, our implementation is based on the Tensor2Tensor framework. We train
Transformer and CoDA Transformer for 100K steps using the tiny setting. The evaluation metric is
accuracy per sequence which means the model only gets it correct if it generates the entire sequence
correctly. Baselines are reported from [Polosukhin and Skidanov, 2018].

Model Acc
Attention Seq2Seq 54.4
Seq2Tree + Search 86.1
Transformer 96.8
CoDA Transformer 97.7

Table 6: Experimental results on Text2Code Generation task (AlgoLisp).

Results Table 6 reports results on the Text2Code task. Our CoDA Transformer outperforms the
base Transformer by about +0.9% and overall achieving state-of-the-art results on this task. Similar
to the MLU task, CoDA Transformer comes close to solving this problem.

4 Visualization

In order to provide an in-depth study of the behaviour our proposed mechanism, this section presents
a visual study of the CoDA mechanism. More concretely, we trained a model and extracted the
matrices tanh(E), sigmoid(N) and M . Figure 2 illustrates some of these visualizations.

We make several key observations. First, the behaviour of sigmoid(N) is aligned with our intuition,
saturating at {0, 1} and acting as gates. Second, the behaviour of tanh(E) concentrates around 0
but spreads across both negative and positive values. Lastly, the shape matrix M follows tanh(E)

5Our focus was to test CoDA on a wide range of applications. We leave evaluating CoDA on other WMT
datasets such as En-De or En-Fr for future work.

7

0.0 0.2 0.4 0.6 0.8 1.0
Histogram sigmoid(N)

0

10000

20000

30000

40000

50000

(a) sigmoid(N)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Histogram tanh(E)

0

10000

20000

30000

40000

50000

60000

(b) tanh(E)

0.2 0.0 0.2 0.4 0.6
Histogram M

0

10000

20000

30000

40000

50000

60000

(c) Matrix M

Figure 2: Visualization at d = 200.

quite closely although there are a larger percentage of values close to 0 due to composing with
sigmoid(N).

At convergence, the model learns values of tanh(E) which are close to 0 and more biased towards
negative values. This is surprising since we also found that tanh(E) are saturated, i.e., {−1,−1}
at the early epochs. We found that the model learns to shrink representations, allowing tanh(E) to
have values closer to 0. Finally we note that the shape of M remains similar to tanh(E). However,
the distribution near 0 values change slightly, likely to be influenced by the sigmoid(N) values.

5 Related Work

Attention [Bahdanau et al., 2014] is a well-established building block in deep learning research
today. A wide spectrum of variations have been proposed across the recent years, including Content-
based [Graves et al., 2014], Additive [Bahdanau et al., 2014], Location-based [Luong et al., 2015],
Dot-Product [Luong et al., 2015] and Scaled Dot-Product [Vaswani et al., 2017]. Many of these
adaptations vary the scoring function which computes alignment scores. Ultimately, Softmax operator
normalizes the sequence and computes relative importance. In essence, the motivation of attention is
literally derived from its naming, i.e., to pay attention to certain parts of the input representation.

In very recent years, more sub-branches of attention mechanisms have also started to show great
promise across many application domains. Self-attention [Xu et al., 2015, Vaswani et al., 2017]
has been shown to be an effective replacement for recurrence/convolution. On the other hand,
Bidirectional attention flow [Seo et al., 2016] is known to be effective at learning query-document
representations. Decomposable attention [Parikh et al., 2016] provides a strong inductive prior for
learning alignment in natural language inference. A common denominator of these recent, advanced
attention mechanisms is the computation of an affinity matrix which can be interpreted as a fully
connected graph that connects all nodes/tokens in each sequence.

The extent of paying attention is also an interesting area of research. An extreme focus, commonly
referred to as hard attention [Xu et al., 2015] tries to learn discriminate representations that focus
solely on certain targets. Conversely, soft attention [Bahdanau et al., 2014] access and pools across
the entire input.

All in all, the idea of attention is to learn relative representations. To the best of our knowledge, there
have been no work to consider learning attentive representations that enable negative representations
(subtracting) during pooling. Moreover, there is also no work that considers a dual affinity scheme,
i.e., considering both positive and negative affinity when learning to attend.

6 Conclusion

We proposed a new quasi-attention method, the compositional de-attention (CoDA) mechanism. We
apply CoDA across an extensive number of NLP tasks. Results demonstrate promising results and the
CoDA-variations of several existing state-of-the-art models achieve new state-of-the-art performances
in several datasets.

8

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil
Houlsby, and Wei Wang. Ask the right questions: Active question reformulation with reinforcement
learning. arXiv preprint arXiv:1705.07830, 2017.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step retriever-
reader interaction for scalable open-domain question answering. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=HkfPSh05K7.

Bhuwan Dhingra, Kathryn Mazaitis, and William W Cohen. Quasar: Datasets for question answering
by search and reading. arXiv preprint arXiv:1707.03904, 2017.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur Guney, Volkan Cirik, and Kyunghyun Cho.
Searchqa: A new q&a dataset augmented with context from a search engine. arXiv preprint
arXiv:1704.05179, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong Zhou, and Li Deng. Towards neural phrase-
based machine translation. arXiv preprint arXiv:1706.05565, 2017.

Tushar Khot, Ashish Sabharwal, and Peter Clark. Scitail: A textual entailment dataset from science
question answering. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dialogue systems. arXiv preprint arXiv:1506.08909,
2015.

Minh-Thang Luong and Christopher D Manning. Stanford neural machine translation systems for
spoken language domains.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. arXiv preprint arXiv:1606.01933, 2016.

Illia Polosukhin and Alexander Skidanov. Neural program search: Solving programming tasks from
description and examples. arXiv preprint arXiv:1802.04335, 2018.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian Su. Densely connected attention propagation for
reading comprehension. In Advances in Neural Information Processing Systems, pages 4911–4922,
2018.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic
logic units. In Advances in Neural Information Processing Systems, pages 8046–8055, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura. What is the jeopardy model? a quasi-
synchronous grammar for qa. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
2007.

9

https://openreview.net/forum?id=HkfPSh05K7

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang,
Gerald Tesauro, Bowen Zhou, and Jing Jiang. RΘ3: Reinforced reader-ranker for open-domain
question answering. arXiv preprint arXiv:1709.00023, 2017.

Sean Welleck, Jason Weston, Arthur Szlam, and Kyunghyun Cho. Dialogue natural language
inference. arXiv preprint arXiv:1811.00671, 2018.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International conference on machine learning, pages 2048–2057, 2015.

Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for open-domain question
answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 2013–2018, 2015.

10

	Introduction
	Compositional De-Attention Networks (CoDA)
	Input Format and Pairwise Formulation
	Dual Affinity Computation
	Compositional De-Attention Matrix
	Compositional Pooling
	Incorporating CoDA to Existing Models

	Experiments
	Open Domain Question Answering
	Retrieval and Ranking
	Natural Language Inference
	Machine Translation
	Sentiment Analysis
	Program Search / Text2Code Generation

	Visualization
	Related Work
	Conclusion

